Strange attractors in an antiferromagnetic Ising model

被引:22
作者
Ananikian, NS
Dallakian, SK
Izmailian, NS
Oganessyan, KA
机构
[1] Department of Theoretical Physics, Yerevan Physics Institute, 375036 Yerevan
来源
FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE | 1997年 / 5卷 / 01期
关键词
D O I
10.1142/S0218348X97000176
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The three-site antiferromagnetic Ising model on Husimi tree is investigated in an external magnetic field. The full bifurcation diagram, including chaos, of the magnetization is exhibited. With the ''thermodynamic formalism'', we investigate the antiferromagnetic Ising model in the case of fully developed chaos and describe the chaotic properties of this statistical mechanical system via the invariants characterizing a strange attractor. It is shown that this system displays in the chaotic region a phase transition at a positive ''temperature'' whereas in a class of maps close to x --> 4x(1-x), the phase transitions occur at negative ''temperatures''. The Frobenius-Perron recursion equation is numerically solved and the density of the invariant measure is obtained.
引用
收藏
页码:175 / 185
页数:11
相关论文
共 42 条
[1]   THE GAUGE POTTS-MODEL ON A GENERALIZED BETHE LATTICE [J].
AKHEYAN, AZ ;
ANANIKIAN, NS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (11) :3111-3119
[2]   ANTIFERROMAGNETIC POTTS-MODEL - PHASE-TRANSITION THROUGH DOUBLING BIFURCATION [J].
AKHEYAN, AZ ;
ANANIKIAN, NS .
PHYSICS LETTERS A, 1994, 186 (1-2) :171-174
[3]   TRICRITICAL PHENOMENA IN A Z(3) LATTICE GAUGE-THEORY [J].
ANANIKIAN, NS ;
SHCHERBAKOV, RR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (23) :L887-L890
[4]   PHASE-DIAGRAMS AND TRICRITICAL EFFECTS IN THE BEG MODEL [J].
ANANIKIAN, NS ;
AVAKIAN, AR ;
IZMAILIAN, NS .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1991, 172 (03) :391-404
[5]  
ANANIKIAN NS, 1995, JETP LETT+, V61, P496
[6]   MANY-BODY INTERACTIONS IN RARE-GASES - KRYPTON AND XENON [J].
BARKER, JA .
PHYSICAL REVIEW LETTERS, 1986, 57 (02) :230-233
[7]  
BATUNIN AV, 1995, USP FIZ NAUK+, V165, P645, DOI 10.1070/PU1995v038n06ABEH000091
[8]  
BAXTER RJ, 1982, EXACTLY SOLVED MODEL, pCH4
[9]   THE ENTROPY FUNCTION FOR CHARACTERISTIC EXPONENTS [J].
BOHR, T ;
RAND, D .
PHYSICA D, 1987, 25 (1-3) :387-398
[10]   ORDER PARAMETER, SYMMETRY-BREAKING, AND PHASE-TRANSITIONS IN THE DESCRIPTION OF MULTIFRACTAL SETS [J].
BOHR, T ;
JENSEN, MH .
PHYSICAL REVIEW A, 1987, 36 (10) :4904-4915