The Therapeutic Potential of microRNAs in Nervous System Damage, Degeneration, and Repair

被引:47
作者
Hutchison, Emmette R. [1 ,2 ]
Okun, Eitan [1 ]
Mattson, Mark P. [1 ]
机构
[1] NIA, Neurosci Lab, Intramural Res Program, Baltimore, MD 21224 USA
[2] Brown Univ, Dept Neurosci, Providence, RI 02912 USA
关键词
miRNAs; Neurodegenerative disease; Alzheimer's disease; Parkinson's disease; Huntington's disease; Transplantation; MEDIATED RNA INTERFERENCE; TRANSIENT FOCAL ISCHEMIA; TARGET MESSENGER-RNAS; NUCLEIC-ACID PROBES; ALZHEIMERS-DISEASE; HUNTINGTONS-DISEASE; ALPHA-SYNUCLEIN; NEURONAL DIFFERENTIATION; MICROARRAY ANALYSIS; PARKINSONS-DISEASE;
D O I
10.1007/s12017-009-8086-x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
MicroRNAS (miRNAs) have been suggested to play important roles in the central nervous system during development as well as disease. miRNAs appear to be dysregulated in a number of neurodegenerative diseases, developmental disorders, and as a result of stroke. Each miRNA has the ability to regulate hundreds of messenger RNA transcripts, both by causing degradation of the mRNA and by inhibition of protein translation. Recent findings suggest that it may eventually be possible to treat some neurological disorders by restoring or inhibiting miRNAs altered by disease pathology. Both viral delivery and administration of modified oligonucleotides mimicking or inhibiting specific miRNAs have been effective in model systems. Artificial miRNAs have also been generated for the repression of specific transcripts. Alteration of miRNA expression by disease and insult also holds the potential for improved diagnostic tools. Finally, miRNAs have been shown to control cellular proliferation and specification, suggesting that manipulation of miRNAs in cultured cells could result in more convenient generation of pure cell populations for transplantation.
引用
收藏
页码:153 / 161
页数:9
相关论文
共 68 条
[1]   Sequence variants in SLITRK1 are associated with Tourette's syndrome [J].
Abelson, JF ;
Kwan, KY ;
O'Roak, BJ ;
Baek, DY ;
Stillman, AA ;
Morgan, TM ;
Mathews, CA ;
Pauls, DA ;
Rasin, MR ;
Gunel, M ;
Davis, NR ;
Ercan-Sencicek, AG ;
Guez, DH ;
Spertus, JA ;
Leckman, JF ;
Dure, LS ;
Kurlan, R ;
Singer, HS ;
Gilbert, DL ;
Farhi, A ;
Louvi, A ;
Lifton, RP ;
Sestan, N ;
State, MW .
SCIENCE, 2005, 310 (5746) :317-320
[2]   The impact of microRNAs on protein output [J].
Baek, Daehyun ;
Villen, Judit ;
Shin, Chanseok ;
Camargo, Fernando D. ;
Gygi, Steven P. ;
Bartel, David P. .
NATURE, 2008, 455 (7209) :64-U38
[3]   Dysregulation of miRNA 181b in the temporal cortex in schizophrenia [J].
Beveridge, Natalie J. ;
Tooney, Paul A. ;
Carroll, Adam P. ;
Gardiner, Erin ;
Bowden, Nikola ;
Scott, Rodney J. ;
Tran, Nham ;
Dedova, Irina ;
Cairns, Murray J. .
HUMAN MOLECULAR GENETICS, 2008, 17 (08) :1156-1168
[4]   MicroRNA-298 and MicroRNA-328 Regulate Expression of Mouse β-Amyloid Precursor Protein-converting Enzyme 1 [J].
Boissonneault, Vincent ;
Plante, Isabelle ;
Rivest, Serge ;
Provost, Patrick .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (04) :1971-1981
[5]   Artificial MicroRNAs as siRNA Shuttles: Improved Safety as Compared to shRNAs In vitro and In vivo [J].
Boudreau, Ryan L. ;
Martins, Ines ;
Davidson, Beverly L. .
MOLECULAR THERAPY, 2009, 17 (01) :169-175
[6]   MicroRNA in schizophrenia: Genetic and expression analysis of miR-130b (22q 11) [J].
Burmistrova, O. A. ;
Goltsov, A. Y. ;
Abramova, L. I. ;
Kaleda, V. G. ;
Orlova, V. A. ;
Rogaev, E. I. .
BIOCHEMISTRY-MOSCOW, 2007, 72 (05) :578-582
[7]   A functional study of miR-124 in the developing neural tube [J].
Cao, Xinwei ;
Pfaff, Samuel L. ;
Gage, Fred H. .
GENES & DEVELOPMENT, 2007, 21 (05) :531-536
[8]   Origins and Mechanisms of miRNAs and siRNAs [J].
Carthew, Richard W. ;
Sontheimer, Erik J. .
CELL, 2009, 136 (04) :642-655
[9]   Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC [J].
Castanotto, Daniela ;
Sakurai, Kumi ;
Lingeman, Robert ;
Li, Haitang ;
Shively, Louise ;
Aagaard, Lars ;
Soifer, Harris ;
Gatignol, Anne ;
Riggs, Arthur ;
Rossi, John J. .
NUCLEIC ACIDS RESEARCH, 2007, 35 (15) :5154-5164
[10]  
Cataldo AM, 2003, J NEUROSCI, V23, P6788