Volatile jam and flow fluctuation in counter flow of slender particles

被引:16
作者
Ito, Satoru [1 ]
Nagatani, Takashi [1 ]
Saegusa, Tatsuhiko [1 ]
机构
[1] Shizuoka Univ, Dept Mech Engn, Hamamatsu, Shizuoka 4328561, Japan
关键词
lattice gas model; mobile objects; traffic dynamics; pedestrian flow;
D O I
10.1016/j.physa.2006.04.067
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the counter flow of slender particles on square lattice under periodic boundaries. Two types of particles going to the right and to the left are taken into account, where the size of right particles is larger than that of left particles. The counter flow of slender particles with different sizes is compared with that of slender particles with the same size. The jamming transition occurs at a critical density. Near the transition point, the volatile jam appears with a period, disappears in time, is formed again, and the process occurs repeatedly. The flow fluctuates highly by forming the volatile jam. The volatile jam moves slowly to the left direction, while the jam is stationary when the size of right particles equals that of left particles. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:672 / 682
页数:11
相关论文
共 24 条
[1]   Simulation of pedestrian dynamics using a two-dimensional cellular automaton [J].
Burstedde, C ;
Klauck, K ;
Schadschneider, A ;
Zittartz, J .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 295 (3-4) :507-525
[2]   Statistical physics of vehicular traffic and some related systems [J].
Chowdhury, D ;
Santen, L ;
Schadschneider, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (4-6) :199-329
[3]   Simulating dynamical features of escape panic [J].
Helbing, D ;
Farkas, I ;
Vicsek, T .
NATURE, 2000, 407 (6803) :487-490
[4]   Lattice gas simulation of experimentally studied evacuation dynamics [J].
Helbing, D ;
Isobe, M ;
Nagatani, T ;
Takimoto, K .
PHYSICAL REVIEW E, 2003, 67 (06) :4-067101
[5]   SOCIAL FORCE MODEL FOR PEDESTRIAN DYNAMICS [J].
HELBING, D ;
MOLNAR, P .
PHYSICAL REVIEW E, 1995, 51 (05) :4282-4286
[6]   Freezing by heating in a driven mesoscopic System [J].
Helbing, D ;
Farkas, IJ ;
Vicsek, T .
PHYSICAL REVIEW LETTERS, 2000, 84 (06) :1240-1243
[7]   Traffic and related self-driven many-particle systems [J].
Helbing, D .
REVIEWS OF MODERN PHYSICS, 2001, 73 (04) :1067-1141
[8]  
Isobe M, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.066132
[9]   Experiment and simulation of pedestrian counter flow [J].
Isobe, M ;
Adachi, T ;
Nagatani, T .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 336 (3-4) :638-650
[10]   Optimal admission time for shifting the audience [J].
Itoh, T ;
Nagatani, T .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 313 (3-4) :695-708