Interactions of nitrate and CO2 enrichment on growth, carbohydrates, and rubisco in arabidopsis starch mutants.: Significance of starch and hexose

被引:55
作者
Sun, JD
Gibson, KM
Kiirats, O
Okita, TW
Edwards, GE [1 ]
机构
[1] Washington State Univ, Sch Biol Sci, Pullman, WA 99164 USA
[2] Washington State Univ, Inst Biol Chem, Pullman, WA 99164 USA
关键词
D O I
10.1104/pp.010058
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Wild-type (wt) Arabidopsis plants, the starch-deficient mutant TL46, and the near-starchless mutant TL25 were grown in hydroponics under two levels of nitrate, 0.2 versus 6 mm, and two levels of CO2, 35 versus 100 Pa. Growth (fresh weight and leaf area basis) was highest in wt plants, lower in TL46, and much lower in TL25 plants under a given treatment. It is surprising that the inability to synthesize starch restricted leaf area development under both low N (N-L) and high N (N-H). For each genotype, the order of greatest growth among the four treatments was high CO2/N-H > low CO2/N-H, > high CO2/N-L, which was similar to low CO2/N-L. Under high CO2/N-L, wt and TL46 plants retained considerable starch in leaves at the end of the night period, and TL25 accumulated large amounts of soluble sugars, indicative of N-limited restraints on utilization of photosynthates. The lowest ribulose-1,5-bisphosphate carboxylase/oxygenase per leaf area was in plants grown under high CO2/N-L. When N supply is limited, the increase in soluble sugars, particularly in the starch mutants, apparently accentuates the feedback and down-regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase, resulting in greater reduction of growth. With an adequate supply of N, growth is limited in the starch mutants due to insufficient carbohydrate reserves during the dark period. A combination of limited N and a limited capacity to synthesize starch, which restrict the capacity to use photosynthate, and high CO2, which increases the potential to produce photosynthate, provides conditions for strong down-regulation of photosynthesis.
引用
收藏
页码:1573 / 1583
页数:11
相关论文
共 61 条
[1]   NOVEL CHARACTERISTICS OF CASSAVA, MANIHOT-ESCULENTA CRANTZ, A REPUTED C-3-C-4 INTERMEDIATE PHOTOSYNTHESIS SPECIES [J].
ANGELOV, MN ;
SUN, JD ;
BYRD, GT ;
BROWN, RH ;
BLACK, CC .
PHOTOSYNTHESIS RESEARCH, 1993, 38 (01) :61-72
[2]  
[Anonymous], ENCY PLANT PHYSL A
[3]   EFFECTS OF SOURCE-SINK RELATIONS ON PHOTOSYNTHETIC ACCLIMATION TO ELEVATED CO2 [J].
ARP, WJ .
PLANT CELL AND ENVIRONMENT, 1991, 14 (08) :869-875
[4]   Effects of elevated CO2, nitrogen form and concentration on growth and photosynthesis of a fast- and slow-growing grass [J].
Bowler, JM ;
Press, MC .
NEW PHYTOLOGIST, 1996, 132 (03) :391-401
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   ALTERATIONS IN GROWTH, PHOTOSYNTHESIS, AND RESPIRATION IN A STARCHLESS MUTANT OF ARABIDOPSIS-THALIANA (L) DEFICIENT IN CHLOROPLAST PHOSPHOGLUCOMUTASE ACTIVITY [J].
CASPAR, T ;
HUBER, SC ;
SOMERVILLE, C .
PLANT PHYSIOLOGY, 1985, 79 (01) :11-17
[7]   EFFECT OF CARBON-DIOXIDE ENRICHMENT ON CHLOROPHYLL CONTENT, STARCH CONTENT AND STARCH GRAIN-STRUCTURE IN TRIFOLIUM-SUBTERRANEUM LEAVES [J].
CAVE, G ;
TOLLEY, LC ;
STRAIN, BR .
PHYSIOLOGIA PLANTARUM, 1981, 51 (02) :171-174
[8]   Effects of short- and long-term elevated CO2 on the expression of ribulose-1,5-bisphosphate carboxylase/oxygenase genes and carbohydrate accumulation in leaves of Arabidopsis thaliana (L) Heynh [J].
Cheng, SH ;
Moore, BD ;
Seemann, JR .
PLANT PHYSIOLOGY, 1998, 116 (02) :715-723
[9]  
Collatz GJ, 1979, CARNEGIE I WASH YR B, V78, P171
[10]  
CURE JD, 1991, PHYSIOL PLANTARUM, V83, P687, DOI 10.1111/j.1399-3054.1991.tb02488.x