Interactions of nitrate and CO2 enrichment on growth, carbohydrates, and rubisco in arabidopsis starch mutants.: Significance of starch and hexose

被引:55
作者
Sun, JD
Gibson, KM
Kiirats, O
Okita, TW
Edwards, GE [1 ]
机构
[1] Washington State Univ, Sch Biol Sci, Pullman, WA 99164 USA
[2] Washington State Univ, Inst Biol Chem, Pullman, WA 99164 USA
关键词
D O I
10.1104/pp.010058
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Wild-type (wt) Arabidopsis plants, the starch-deficient mutant TL46, and the near-starchless mutant TL25 were grown in hydroponics under two levels of nitrate, 0.2 versus 6 mm, and two levels of CO2, 35 versus 100 Pa. Growth (fresh weight and leaf area basis) was highest in wt plants, lower in TL46, and much lower in TL25 plants under a given treatment. It is surprising that the inability to synthesize starch restricted leaf area development under both low N (N-L) and high N (N-H). For each genotype, the order of greatest growth among the four treatments was high CO2/N-H > low CO2/N-H, > high CO2/N-L, which was similar to low CO2/N-L. Under high CO2/N-L, wt and TL46 plants retained considerable starch in leaves at the end of the night period, and TL25 accumulated large amounts of soluble sugars, indicative of N-limited restraints on utilization of photosynthates. The lowest ribulose-1,5-bisphosphate carboxylase/oxygenase per leaf area was in plants grown under high CO2/N-L. When N supply is limited, the increase in soluble sugars, particularly in the starch mutants, apparently accentuates the feedback and down-regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase, resulting in greater reduction of growth. With an adequate supply of N, growth is limited in the starch mutants due to insufficient carbohydrate reserves during the dark period. A combination of limited N and a limited capacity to synthesize starch, which restrict the capacity to use photosynthate, and high CO2, which increases the potential to produce photosynthate, provides conditions for strong down-regulation of photosynthesis.
引用
收藏
页码:1573 / 1583
页数:11
相关论文
共 61 条
[11]   LEAF INJURY TO BEAN-PLANTS GROWN IN CARBON-DIOXIDE ENRICHED ATMOSPHERES [J].
EHRET, DL ;
JOLLIFFE, PA .
CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1985, 63 (11) :2015-2020
[12]  
EVANS JR, 1988, PLANT CELL PHYSIOL, V29, P157
[13]   Local and long-range signaling pathways regulating plant responses to nitrate [J].
Forde, BG .
ANNUAL REVIEW OF PLANT BIOLOGY, 2002, 53 :203-224
[14]   The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco [J].
Geiger, M ;
Haake, V ;
Ludewig, F ;
Sonnewald, U ;
Stitt, M .
PLANT CELL AND ENVIRONMENT, 1999, 22 (10) :1177-1199
[15]   Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions [J].
Gibeaut, DM ;
Hulett, J ;
Cramer, GR ;
Seemann, JR .
PLANT PHYSIOLOGY, 1997, 115 (02) :317-319
[16]   REGULATION OF PHOTOSYNTHESIS BY END-PRODUCT ACCUMULATION IN LEAVES OF PLANTS STORING STARCH, SUCROSE, AND HEXOSE SUGARS [J].
GOLDSCHMIDT, EE ;
HUBER, SC .
PLANT PHYSIOLOGY, 1992, 99 (04) :1443-1448
[17]   CARBON CATABOLITE REPRESSION REGULATES GLYOXYLATE CYCLE GENE-EXPRESSION IN CUCUMBER [J].
GRAHAM, IA ;
DENBY, KJ ;
LEAVER, CJ .
PLANT CELL, 1994, 6 (05) :761-772
[18]   PHOTOSYNTHESIS AND LIGHT ACTIVATION OF RIBULOSE 1,5-BISPHOSPHATE CARBOXYLASE IN THE PRESENCE OF STARCH [J].
GRUB, A ;
MACHLER, F .
JOURNAL OF EXPERIMENTAL BOTANY, 1990, 41 (231) :1293-1301
[19]  
HOAGLAND DR, 1950, 347 COLL AGR
[20]   SUGAR SENSING IN HIGHER-PLANTS [J].
JANG, JC ;
SHEEN, J .
PLANT CELL, 1994, 6 (11) :1665-1679