Measurement of qubits

被引:1692
作者
James, DFV
Kwiat, PG
Munro, WJ
White, AG
机构
[1] Los Alamos Natl Lab, Theoret Div T4, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Phys Div P23, Los Alamos, NM 87545 USA
[3] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[4] Univ Queensland, Dept Phys, Brisbane, Qld 4072, Australia
[5] Hewlett Packard Labs, Bristol BS34 8QZ, Avon, England
来源
PHYSICAL REVIEW A | 2001年 / 64卷 / 05期
关键词
D O I
10.1103/PhysRevA.64.052312
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe in detail the theory underpinning the measurement of density matrices of a pair of quantum two-level systems ("qubits"). Our particular emphasis is on qubits realized by the two polarization degrees of freedom of a pair of entangled photons generated in a down-conversion experiment; however, the discussion applies in general, regardless of the actual physical realization. Two techniques are discussed, namely, a tomographic reconstruction (in which the density matrix is linearly related to a set of measured quantities) and a maximum likelihood technique which requires numerical optimization (but has the advantage of producing density matrices that are always non-negative definite). In addition, a detailed error analysis is presented, allowing errors in quantities derived from the density matrix, such as the entropy or entanglement of formation, to be estimated. Examples based on down-conversion experiments are used to illustrate our results.
引用
收藏
页码:15 / 523121
页数:15
相关论文
共 38 条
[1]   EXPERIMENTALLY DETERMINED DENSITY-MATRICES FOR H(N=3) FORMED IN H+-HE COLLISIONS FROM 20 TO 100 KEV [J].
ASHBURN, JR ;
CLINE, RA ;
VANDERBURGT, PJM ;
WESTERVELD, WB ;
RISLEY, JS .
PHYSICAL REVIEW A, 1990, 41 (05) :2407-2421
[2]   Maximum-likelihood estimation of the density matrix [J].
Banaszek, K ;
D'Ariano, GM ;
Paris, MGA ;
Sacchi, MF .
PHYSICAL REVIEW A, 2000, 61 (01) :4
[3]  
BERGLUND AJ, 2000, THESIS DARTMOUTH COL
[4]  
BERGLUND AJ, QUANTPH0010001
[5]  
Braunstein S, 2000, FORTSCHR PHYS, V48, P767
[6]  
Braunstein S. L., 2001, SCALABLE QUANTUM COM
[7]   Separability of very noisy mixed states and implications for NMR Quantum computing [J].
Braunstein, SL ;
Caves, CM ;
Jozsa, R ;
Linden, N ;
Popescu, S ;
Schack, R .
PHYSICAL REVIEW LETTERS, 1999, 83 (05) :1054-1057
[8]   Measurement of the quantum states of squeezed light [J].
Breitenbach, G ;
Schiller, S ;
Mlynek, J .
NATURE, 1997, 387 (6632) :471-475
[9]   Experimental implementation of fast quantum searching [J].
Chuang, IL ;
Gershenfeld, N ;
Kubinec, M .
PHYSICAL REVIEW LETTERS, 1998, 80 (15) :3408-3411
[10]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5