Measurement of qubits

被引:1692
作者
James, DFV
Kwiat, PG
Munro, WJ
White, AG
机构
[1] Los Alamos Natl Lab, Theoret Div T4, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Phys Div P23, Los Alamos, NM 87545 USA
[3] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[4] Univ Queensland, Dept Phys, Brisbane, Qld 4072, Australia
[5] Hewlett Packard Labs, Bristol BS34 8QZ, Avon, England
来源
PHYSICAL REVIEW A | 2001年 / 64卷 / 05期
关键词
D O I
10.1103/PhysRevA.64.052312
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe in detail the theory underpinning the measurement of density matrices of a pair of quantum two-level systems ("qubits"). Our particular emphasis is on qubits realized by the two polarization degrees of freedom of a pair of entangled photons generated in a down-conversion experiment; however, the discussion applies in general, regardless of the actual physical realization. Two techniques are discussed, namely, a tomographic reconstruction (in which the density matrix is linearly related to a set of measured quantities) and a maximum likelihood technique which requires numerical optimization (but has the advantage of producing density matrices that are always non-negative definite). In addition, a detailed error analysis is presented, allowing errors in quantities derived from the density matrix, such as the entropy or entanglement of formation, to be estimated. Examples based on down-conversion experiments are used to illustrate our results.
引用
收藏
页码:15 / 523121
页数:15
相关论文
共 38 条
[21]  
MANDEL L, 1995, OPTICAL COHERENCE QU, pCH6
[22]  
MELISSINOS AC, 1966, EXPT MODERN PHYSICS, P467
[23]  
MORSE PM, 1953, METHODS THEORETICAL, V1, P884
[24]  
NIELSEN MA, 2000, QUANTUM COMPUTATION, pCH11
[25]  
Press W.H., 1992, NUMERICAL RECIPES FO
[26]  
Raymer MG, 2000, QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT 2, P147
[27]   Iterative algorithm for reconstruction of entangled states -: art. no. 040303 [J].
Rehácek, J ;
Hradil, Z ;
Jezek, M .
PHYSICAL REVIEW A, 2001, 63 (04) :1-4
[28]   Measuring the entanglement of bipartite pure states [J].
Sancho, JMG ;
Huelga, SF .
PHYSICAL REVIEW A, 2000, 61 (04) :7
[29]  
SCHIFF LI, 1968, QUANTUM MECHANICS, P246
[30]   MEASUREMENT OF THE WIGNER DISTRIBUTION AND THE DENSITY-MATRIX OF A LIGHT MODE USING OPTICAL HOMODYNE TOMOGRAPHY - APPLICATION TO SQUEEZED STATES AND THE VACUUM [J].
SMITHEY, DT ;
BECK, M ;
RAYMER, MG ;
FARIDANI, A .
PHYSICAL REVIEW LETTERS, 1993, 70 (09) :1244-1247