Monovalent cations mediate formation of native tertiary structure of the Tetrahymena thermophila ribozyme

被引:75
作者
Takamoto, K
He, Q
Morris, S
Chance, MR
Brenowitz, M
机构
[1] Yeshiva Univ Albert Einstein Coll Med, Ctr Synchrotron Biosci, Bronx, NY 10461 USA
[2] Yeshiva Univ Albert Einstein Coll Med, Dept Physiol & Biophys, Bronx, NY 10461 USA
[3] Yeshiva Univ Albert Einstein Coll Med, Dept Biochem, Bronx, NY 10461 USA
关键词
D O I
10.1038/nsb871
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The formation of individual tertiary contacts of the Tetrahymena L-21 Sca I ribozyme has been monitored by hydroxyl radical footprinting and its global conformation by analytical ultracentrifugation as a function of monovalent ion concentration in the absence of divalent ions. Advanced methods of data analysis, which allow the hydroxyl radical reactivity of every nucleotide to be quantified, permit monitoring of each and every structural element of the RNA. Monovalent ion-mediated global compaction of the ribozyme is accompanied by the formation of native tertiary contacts; most native tertiary contacts are evident except several that are located near where divalent ions are observed in crystallographic structures. Non-native tertiary contacts are also observed at low but not high concentrations of monovalent ions. In light of recent studies that have shown that the presence of monovalent ions greatly accelerates the Mg2+-dependent folding of the Tetrahymena ribozyme, the present studies suggest that Na+ concentration changes not only the starting position of the RNA on its folding funnel but also pushes it deep into the well by forming native tertiary contacts and, thus, favoring fast and correct folding pathways.
引用
收藏
页码:928 / 933
页数:6
相关论文
共 45 条
[1]  
[Anonymous], 1910, J. Physiol., DOI [DOI 10.1017/CBO9781107415324.004, DOI 10.1113/JPHYSIOL.1910.SP001386]
[2]   Visualizing metal-ion-binding sites in group I introns by iron(II)-mediated Fenton reactions [J].
Berens, C ;
Streicher, B ;
Schroeder, R ;
Hillen, W .
CHEMISTRY & BIOLOGY, 1998, 5 (03) :163-175
[3]  
BRENOWITZ M, 1986, METHOD ENZYMOL, V130, P132
[4]  
Buchmueller KL, 2000, NAT STRUCT BIOL, V7, P362
[5]   Metal-binding sites in the major groove of a large ribozyme domain [J].
Cate, JH ;
Doudna, JA .
STRUCTURE, 1996, 4 (10) :1221-1229
[6]   A magnesium ion core at the heart of a ribozyme domain [J].
Cate, JH ;
Hanna, RL ;
Doudna, JA .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (07) :553-558
[7]   Crystal structure of a group I ribozyme domain: Principles of RNA packing [J].
Cate, JH ;
Gooding, AR ;
Podell, E ;
Zhou, KH ;
Golden, BL ;
Kundrot, CE ;
Cech, TR ;
Doudna, JA .
SCIENCE, 1996, 273 (5282) :1678-1685
[8]   REPRESENTATION OF THE SECONDARY AND TERTIARY STRUCTURE OF GROUP-I INTRONS [J].
CECH, TR ;
DAMBERGER, SH ;
GUTELL, RR .
NATURE STRUCTURAL BIOLOGY, 1994, 1 (05) :273-280
[9]   VISUALIZING THE HIGHER-ORDER FOLDING OF A CATALYTIC RNA MOLECULE [J].
CELANDER, DW ;
CECH, TR .
SCIENCE, 1991, 251 (4992) :401-407
[10]   METAL COORDINATION SITES THAT CONTRIBUTE TO STRUCTURE AND CATALYSIS IN THE GROUP-I INTRON FROM TETRAHYMENA [J].
CHRISTIAN, EL ;
YARUS, M .
BIOCHEMISTRY, 1993, 32 (17) :4475-4480