First principle study of unzipped boron nitride nanotubes

被引:11
作者
Azadi, Sam [1 ,2 ,3 ]
Moradian, Rostam [2 ,3 ,4 ]
机构
[1] SISSA, Int Sch Adv Studies, I-34151 Trieste, Italy
[2] Razi Univ, Fac Sci, Dept Phys, Kermanshah, Italy
[3] Razi Univ, Nano Sci & Nano Technol Res Ctr, Kermanshah, Italy
[4] Inst Res Fundamental Sci IPM, Dept Nanosci, Computat Phys Lab, Tehran, Iran
关键词
Density functional theory; Band structure calculations; Boron nitride nanostructures; GRAPHENE NANORIBBONS; CARBON NANOTUBES;
D O I
10.1016/j.physleta.2009.11.040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Systematic first principle calculations have been used to explain the dangling bonds behaviour in the rolling Up of a boron nitride nanoribbon (BNNR) to construct a single-walled boron nitride nanotube (BNNT). We found in armchair BNNR two degenerate dangling bonds split and move up to higher energies due to symmetry breaking of system. While in zigzag BNNR changing the topology of system does not affect on metallic features of the band structure, but in unzipped BNNT case a metallic-semimetallic phase transition Occurs. Considering the width dependent electronic properties of hydrogen passivated armchair BNNRs, exhibit zigzag behaviour of energy gap in agreement with previous results. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:605 / 609
页数:5
相关论文
共 25 条
[1]   Spin-filtered edge states and quantum hall effect in graphene [J].
Abanin, DA ;
Lee, PA ;
Levitov, LS .
PHYSICAL REVIEW LETTERS, 2006, 96 (17)
[2]  
[Anonymous], WIEN2k: An
[3]   Magnetic boron nitride nanoribbons with tunable electronic properties [J].
Barone, Veronica ;
Peralta, Juan E. .
NANO LETTERS, 2008, 8 (08) :2210-2214
[4]   Electronic states of graphene nanoribbons studied with the Dirac equation [J].
Brey, L ;
Fertig, HA .
PHYSICAL REVIEW B, 2006, 73 (23)
[5]   The stabilities of boron nitride nanoribbons with different hydrogen-terminated edges [J].
Ding, Yi ;
Wang, Yanli ;
Ni, Jun .
APPLIED PHYSICS LETTERS, 2009, 94 (23)
[6]   Peculiar width dependence of the electronic properties of carbon nanoribbons [J].
Ezawa, M .
PHYSICAL REVIEW B, 2006, 73 (04)
[7]   Bipolar supercurrent in graphene [J].
Heersche, Hubert B. ;
Jarillo-Herrero, Pablo ;
Oostinga, Jeroen B. ;
Vandersypen, Lieven M. K. ;
Morpurgo, Alberto F. .
NATURE, 2007, 446 (7131) :56-59
[8]   Narrow graphene nanoribbons from carbon nanotubes [J].
Jiao, Liying ;
Zhang, Li ;
Wang, Xinran ;
Diankov, Georgi ;
Dai, Hongjie .
NATURE, 2009, 458 (7240) :877-880
[9]   Graphitic ribbons without hydrogen-termination: Electronic structures and stabilities [J].
Kawai, T ;
Miyamoto, Y ;
Sugino, O ;
Koga, Y .
PHYSICAL REVIEW B, 2000, 62 (24) :R16349-R16352
[10]   Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J].
Kosynkin, Dmitry V. ;
Higginbotham, Amanda L. ;
Sinitskii, Alexander ;
Lomeda, Jay R. ;
Dimiev, Ayrat ;
Price, B. Katherine ;
Tour, James M. .
NATURE, 2009, 458 (7240) :872-U5