Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons

被引:2927
作者
Kosynkin, Dmitry V. [1 ]
Higginbotham, Amanda L. [1 ]
Sinitskii, Alexander [1 ]
Lomeda, Jay R. [1 ]
Dimiev, Ayrat [1 ]
Price, B. Katherine [1 ]
Tour, James M. [1 ,2 ,3 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
[2] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA
[3] Rice Univ, Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA
关键词
EXFOLIATED GRAPHITE OXIDE; AQUEOUS DISPERSIONS; CHEMICAL-REDUCTION; FILMS; PERMANGANATE; NANOSHEETS; OXIDATION; PHASE;
D O I
10.1038/nature07872
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene, or single-layered graphite, with its high crystallinity and interesting semimetal electronic properties, has emerged as an exciting two-dimensional material showing great promise for the fabrication of nanoscale devices(1-3). Thin, elongated strips of graphene that possess straight edges, termed graphene ribbons, gradually transform from semiconductors to semimetals as their width increases(4-7), and represent a particularly versatile variety of graphene. Several lithographic(7,8), chemical(9-11) and synthetic(12) procedures are known to produce microscopic samples of graphene nanoribbons, and one chemical vapour deposition process(13) has successfully produced macroscopic quantities of nanoribbons at 950 degrees C. Here we describe a simple solution-based oxidative process for producing a nearly 100% yield of nanoribbon structures by lengthwise cutting and unravelling of multiwalled carbon nanotube (MWCNT) side walls. Although oxidative shortening of MWCNTs has previously been achieved(14), lengthwise cutting is hitherto unreported. Ribbon structures with high water solubility are obtained. Subsequent chemical reduction of the nanoribbons from MWCNTs results in restoration of electrical conductivity. These early results affording nanoribbons could eventually lead to applications in fields of electronics and composite materials where bulk quantities of nanoribbons are required(15-17).
引用
收藏
页码:872 / U5
页数:6
相关论文
共 30 条
[1]   Materials science - Oxygen breaks into carbon world [J].
Ajayan, PM ;
Yakobson, BI .
NATURE, 2006, 441 (7095) :818-819
[2]   Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects [J].
Areshkin, Denis A. ;
Gunlycke, Daniel ;
White, Carter T. .
NANO LETTERS, 2007, 7 (01) :204-210
[3]   PERMANGANATE OXIDATION OF AROMATIC ALCOHOLS IN ACID SOLUTION [J].
BANOO, F ;
STEWART, R .
CANADIAN JOURNAL OF CHEMISTRY, 1969, 47 (17) :3199-&
[4]   Graphite oxide:: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids [J].
Bourlinos, AB ;
Gournis, D ;
Petridis, D ;
Szabó, T ;
Szeri, A ;
Dékány, I .
LANGMUIR, 2003, 19 (15) :6050-6055
[5]   Bulk production of a new form of sp2 carbon:: Crystalline graphene nanoribbons [J].
Campos-Delgado, Jessica ;
Romo-Herrera, Jose Manuel ;
Jia, Xiaoting ;
Cullen, David A. ;
Muramatsu, Hiroyuki ;
Kim, Yoong Ahm ;
Hayashi, Takuya ;
Ren, Zhifeng ;
Smith, David J. ;
Okuno, Yu ;
Ohba, Tomonori ;
Kanoh, Hirofumi ;
Kaneko, Katsumi ;
Endo, Morinobu ;
Terrones, Humberto ;
Dresselhaus, Mildred S. ;
Terrones, Mauriclo .
NANO LETTERS, 2008, 8 (09) :2773-2778
[6]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[7]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[8]  
ENDO M, 1988, CHEMTECH, V18, P568
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)