Asymptotic analysis of isotonic estimation for grouped data

被引:3
作者
Zhang, R
Kim, J
Woodroofe, M
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[2] Inha Univ, Dept Stat, Inchon 402751, South Korea
关键词
asymptotic distribution; Brownian motion; central limit theorem; counts; distance sampling; EM-algorithm; empirical process and maximum likelihood estimation;
D O I
10.1016/S0378-3758(00)00301-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A non-parametric estimator of a non-increasing density is found in a class of piecewise linear functions when the data consist only counts. The estimator is shown to be consistent, and the limiting distribution of the estimator is found under different assumptions on the width of the class intervals. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:107 / 117
页数:11
相关论文
共 15 条
[1]  
Bickel PJ, 1996, STAT SINICA, V6, P23
[2]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[3]  
BUCKLAND S, 1992, DISTANCE SAMPLING
[4]  
Devroye L., 1987, A course in density estimation
[5]  
GRENANDER U., 1956, Skand. Aktuarietidskr., V39, P125
[6]  
Groeneboom P, 1999, ANN STAT, V27, P1316
[7]  
GROENEBOOM P., 1985, P BERKELEY C HONOR J, VII, P539
[8]  
GRONEBOOM P, 1989, PROBAB THEORY REL, V81, P79
[9]   CUBE ROOT ASYMPTOTICS [J].
KIM, JY ;
POLLARD, D .
ANNALS OF STATISTICS, 1990, 18 (01) :191-219
[10]   APPROXIMATION OF PARTIAL SUMS OF INDEPENDENT RV-S, AND SAMPLE DFI [J].
KOMLOS, J ;
MAJOR, P ;
TUSNADY, G .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1975, 32 (1-2) :111-131