Scattered data interpolation using data dependant optimization techniques

被引:11
作者
Greiner, G [1 ]
Kolb, A
Riepl, A
机构
[1] Univ Erlangen Nurnberg, IMMD IX, Graph Datenverabeitung, Erlangen, Germany
[2] Univ Appl Sci, Fac Media Informat Sci, Wedel, Germany
关键词
D O I
10.1006/gmod.2001.0542
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Interpolation of scattered data has many applications in different areas. Recently, this problem has gained a lot of interest for CAD applications, in combination with the process of reverse engineering, i.e., the construction of CAD models for existing objects. Until now, no method for scattered data interpolation with a bivariate function has produced surface formats that can be directly integrated into a CAD system. Additionally many of the existing interpolation schemes exhibit undesirable curvature distribution of the reconstructed surface. In this paper we present a method for scattered data interpolation producing tensor-product B-splines with high quality curvature distribution. This method first determines the knot vectors in a way that guarantees the existence of an interpolating B-spline. In a second step the degrees of freedom not specified by the interpolation constraints are automatically set using a data dependent optimization technique. Examples demonstrate the quality of the resulting interpolants w.r.t. curvature distribution and approximation of known Surfaces. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:1 / 18
页数:18
相关论文
共 18 条
  • [1] ARGE E, 1994, APPROXIMATION SCATTE
  • [2] BRUNNETT B, 1993, SURVEYS MATH IND, V3, P1
  • [3] CELNIKER G, 1991, COMP GRAPH, V25, P257, DOI 10.1145/127719.122746
  • [4] de Boor C., 1978, PRACTICAL GUIDE SPLI, DOI DOI 10.1007/978-1-4612-6333-3
  • [5] Duchon J., 1977, LECT NOTES MATH, P85
  • [6] Minimal energy surfaces using parametric splines
    Fasshauer, GE
    Schumaker, LL
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 1996, 13 (01) : 45 - 79
  • [7] Hierarchical B-spline refinement
    Forsey, David R.
    Bartels, Richard H.
    [J]. Computer Graphics (ACM), 1988, 22 (04): : 205 - 212
  • [8] SCATTERED DATA INTERPOLATION - TESTS OF SOME METHODS
    FRANKE, R
    [J]. MATHEMATICS OF COMPUTATION, 1982, 38 (157) : 181 - 200
  • [9] GREINER G, 1994, CURVES SURFACES, V2
  • [10] GREINER G, 1994, P EUROGRAPHICS 94, V13