共 69 条
Salmonella trafficking is defined by continuous dynamic interactions with the endolysosomal system
被引:118
作者:
Drecktrah, Dan
[1
]
Knodler, Leigh A.
[1
]
Howe, Dale
[1
]
Steele-Mortimer, Olivia
[1
]
机构:
[1] NIAID, Intracellular Parasites Lab, Rocky Mt Labs, NIH, Hamilton, MT 59840 USA
来源:
关键词:
acidification;
confocal;
Coxiella;
endosome;
lysosome;
microtubules;
phagosome;
SCV;
type III secretion;
V-ATPase;
D O I:
10.1111/j.1600-0854.2006.00529.x
中图分类号:
Q2 [细胞生物学];
学科分类号:
071009 ;
090102 ;
摘要:
Following invasion of non-phagocytic host cells, Salmonella enterica survives and replicates within a phagosome-like compartment known as the Salmonella-containing vacuole (SCV). It is now well established that SCV biogenesis, like phagosome biogenesis, involves sequential interactions with the endocytic pathway. However, Salmonella is believed to limit these interactions and, in particular, to avoid fusion of terminal lysosomes with the SCV. In this study, we reassessed this process using a high-resolution live-cell imaging approach and found an unanticipated level of interaction between the SCV and the endocytic pathway. Direct interactions, in which late endosomal/lysosomal content was transferred to SCVs, were detected within 30 min of invasion and continued for several hours. Mechanistically, these interactions were very similar to phagosome-lysosome fusion because they were accompanied by rapid acidification of the SCV, could be blocked by chemical perturbation of microtubules or vacuolar acidification and involved the small GTPase Rab7. In comparison with vacuoles containing internalized Escherichia coli or heat-killed Salmonella, SCVs did show some delay of fusion and acidification, although, this appeared to be independent of either type III secretion system. These results provide compelling evidence that inhibition of SCV-lysosome fusion is not the major determinant in establishment of the Salmonella replicative niche in epithelial cells.
引用
收藏
页码:212 / 225
页数:14
相关论文