Lyapunov exponents from geodesic spread in configuration space

被引:16
作者
CerrutiSola, M
Franzosi, R
Pettini, M
机构
[1] UNIV FLORENCE,DIPARTIMENTO FIS,I-50125 FLORENCE,ITALY
[2] IST NAZL FIS NUCL,SEZ FIRENZE,I-50125 FLORENCE,ITALY
[3] INFM,UNITA FIRENZE,FLORENCE,ITALY
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 04期
关键词
D O I
10.1103/PhysRevE.56.4872
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The exact form of the Jacobi-Levi-Civita (JLC) equation for geodesic spread is here explicitly worked out at arbitrary dimension for the configuration space manifold M-E={q is an element of R-N\V(q)<E} of a standard Hamiltonian system, equipped with the Jacobi (or kinetic energy) metric g(J). As the Hamiltonian flow corresponds to a geodesic flow on (M-E, g(J)), the JLC equation can be used to study the degree of instability of the Hamiltonian flow. It is found that the solutions of the JLC equation are closely resembling the solutions of the standard tangent dynamics equation which is used to compute Lyapunov exponents. Therefore the instability exponents obtained through the JLC equation are in perfect quantitative agreement with usual Lyapunov exponents. This work completes a previous investigation that was limited only to two degrees of freedom systems.
引用
收藏
页码:4872 / 4875
页数:4
相关论文
共 13 条
[1]  
[Anonymous], COLLECTED WORKS E FE
[2]   KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS [J].
BENETTIN, G ;
GALGANI, L ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1976, 14 (06) :2338-2345
[3]  
CAIANI L, UNPUB
[4]   ANALYTIC COMPUTATION OF THE STRONG STOCHASTICITY THRESHOLD IN HAMILTONIAN-DYNAMICS USING RIEMANNIAN GEOMETRY [J].
CASETTI, L ;
PETTINI, M .
PHYSICAL REVIEW E, 1993, 48 (06) :4320-4332
[5]   EFFICIENT SYMPLECTIC ALGORITHMS FOR NUMERICAL SIMULATIONS OF HAMILTONIAN FLOWS [J].
CASETTI, L .
PHYSICA SCRIPTA, 1995, 51 (01) :29-34
[6]   Riemannian theory of Hamiltonian chaos and Lyapunov exponents [J].
Casetti, L ;
Clementi, C ;
Pettini, M .
PHYSICAL REVIEW E, 1996, 54 (06) :5969-5984
[7]   GAUSSIAN MODEL FOR CHAOTIC INSTABILITY OF HAMILTONIAN FLOWS [J].
CASETTI, L ;
LIVI, R ;
PETTINI, M .
PHYSICAL REVIEW LETTERS, 1995, 74 (03) :375-378
[8]   Geometric description of chaos in two-degrees-of-freedom Hamiltonian systems [J].
CerrutiSola, M ;
Pettini, M .
PHYSICAL REVIEW E, 1996, 53 (01) :179-188
[9]  
EISENHART LP, 1929, ANN MATH, V30, P591
[10]   GEOMETRICAL HINTS FOR A NONPERTURBATIVE APPROACH TO HAMILTONIAN-DYNAMICS [J].
PETTINI, M .
PHYSICAL REVIEW E, 1993, 47 (02) :828-850