Demonstration of a Liquid-Tin Anode Solid-Oxide Fuel Cell (LTA-SOFC) Operating from Biodiesel Fuel

被引:51
作者
McPhee, William A. G. [6 ]
Boucher, Matthew [1 ,2 ]
Stuart, James [2 ,3 ]
Parnas, Richard S. [1 ,2 ,4 ]
Koslowske, Mark [6 ]
Tao, Thomas [6 ]
Wilhite, Benjamin A. [1 ,2 ,5 ]
机构
[1] Univ Connecticut, Dept Chem Mat & Biomol Engn, Storrs, CT 06269 USA
[2] Univ Connecticut, Connecticut Biofuels Consortium, Storrs, CT 06269 USA
[3] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA
[4] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA
[5] Univ Connecticut, Connecticut Global Fuel Cell Ctr, Storrs, CT 06269 USA
[6] CellTech Power LCC, Westborough, MA 01581 USA
关键词
EMISSIONS; REACTOR; IMPACT;
D O I
10.1021/ef9003413
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, the authors present the first demonstration of a liquid-tin anode solid-oxide fuel cell (LTA-SOFC) operating on pure biodiesel (B100) prepared via base-catalyzed transesterification of virgin and waste cooking oils. The LTA-SOFC was able to convert the biodiesel to electricity at commercially viable power densities, i.e., greater than 100 mW cm(-2). The peak power for each cell was 3.5 W over an active area of 30 cm(-2), which translates to a power density of 117 mW cm(-2) and current density of 217 mA cm(-2). The peak power densities correspond to similar to 80% fuel use at the liquid-tin anode surface and overall cell efficiencies of >40%. These findings demonstrate the flexibility in operating a solid-oxide fuel cell capable of internal reforming from a blend of petroleum- and biomass-derived diesels for greater resource flexibility. Cells were operated for short times (similar to 4.5 h), owing to the experimental nature of the balance of plant. Results support future efforts in developing an efficient balance-of-plant system for demonstrating long-term (>1000 h) power generation from biodiesel using the LTA-SOFC design.
引用
收藏
页码:5036 / 5041
页数:6
相关论文
共 29 条
[21]   Impact of alternative fuels on soot properties and DPF regeneration [J].
Song, Juhun ;
Alam, Mahabubul ;
Boehman, Andre L. .
COMBUSTION SCIENCE AND TECHNOLOGY, 2007, 179 (09) :1991-2037
[22]   Conceptual design and selection of a biodiesel fuel processor for a vehicle fuel cell auxiliary power unit [J].
Specchia, S ;
Tillemans, FWA ;
van den Oosterkamp, R ;
Saracco, G .
JOURNAL OF POWER SOURCES, 2005, 145 (02) :683-690
[23]   Biodiesel combustion, emissions and emission control [J].
Szybist, James P. ;
Song, Juhun ;
Alam, Mahabubul ;
Boehman, Andre L. .
FUEL PROCESSING TECHNOLOGY, 2007, 88 (07) :679-691
[24]   Advancement in Liquid Tin Anode - Solid Oxide Fuel Cell Technology [J].
Tao, T. T. ;
McPhee, W. A. ;
Koslowske, M. T. ;
Bateman, L. S. ;
Slaney, M. J. ;
Bentley, J. .
FUEL CELL SEMINAR 2007, 2008, 12 (01) :681-690
[25]  
U. S. EPA, 2002, EPA420P02001
[26]  
WILHITE BA, 2009, MICROFABRICATED POWE, pCH4
[27]   High-purity hydrogen generation in a microfahricated 23 wt % Ag-Pd membrane device integrated with 8:1 LaNi0.95Co0.05O3/Al2O3 catalyst [J].
Wilhite, Benjamin A. ;
Weiss, Steven E. ;
Ying, Jackie Y. ;
Schmidt, Martin A. ;
Jensen, Klavs F. .
ADVANCED MATERIALS, 2006, 18 (13) :1701-+
[28]   Impact of biodiesel on NOx emissions in a common rail direct injection diesel engine [J].
Zhang, Yu ;
Boehman, Andre L. .
ENERGY & FUELS, 2007, 21 (04) :2003-2012
[29]   CO2-selective water gas shift membrane reactor for fuel cell hydrogen processing [J].
Zou, Jian ;
Huang, Jin ;
Ho, W. S. Winston .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (08) :2272-2279