Cryopreservation of rat precision-cut liver and kidney slices by rapid freezing and vitrification

被引:52
作者
de Graaf, Inge A. M.
Draaisma, Annelies L.
Schoeman, Olaf
Fahy, Gregory M.
Groothuis, Geny M. M.
Koster, Henk J.
机构
[1] Univ Groningen, Inst Drug Explorat, NL-9713 AV Groningen, Netherlands
[2] Solvay Pharmaceut BV, Preclin Drug Validat Unit, NL-1380 DA Weesp, Netherlands
[3] 21st Century Med Inc, Rancho Cucamonga, CA 91730 USA
关键词
precision-cut liver slices; precision-cut kidney slices; VS4; VM3; vitrification; rapid freezing; tissue slice bank;
D O I
10.1016/j.cryobiol.2006.09.002
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Precision-cut tissue slices of both hepatic and extra-hepatic origin are extensively used as an in vitro model to predict in vivo drug metabolism and toxicity. Cryopreservation would greatly facilitate their use. In the present study, we aimed to improve (1) rapid freezing and warming (200 degrees C/min) using 18% Me2SO as cryoprotectant and (2) vitrification with high molarity mixtures of cryoprotectants, VM3 and VS4, as methods to cryopreserve precision-cut rat liver and kidney slices. Viability after cryopreservation and subsequent 3-4 h of incubation at 37 degrees C was determined by measuring ATP content and by microscopical evaluation of histological integrity. Confirming earlier studies, viability of rat liver slices was maintained at high levels by rapid freezing and thawing with 18% Me2SO. However, vitrification of liver slices with VS4 resulted in cryopreservation damage despite the fact that cryoprotectant toxicity was low, no ice was formed during cooling and devitrification was prevented. Viability of liver slices was not improved by using VM3 for vitrification. Kidney slices were found not to survive cryopreservation by rapid freezing. In contrast, viability of renal medullary slices was almost completely maintained after vitrification with VS4, however vitrification of renal cortex slices with VS4 was not successful, partly due to cryoprotectant toxicity. Both kidney cortex and medullary slices were vitrified successfully with VM3 (maintaining viability at 50-80% of fresh slice levels), using an optimised pre-incubation protocol and cooling and warming rates that prevented both visible ice-formation and cracking of the formed glass. In conclusion, vitrification is a promising approach to cryopreserve precision-cut (kidney) slices. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 49 条
[41]   METABOLISM OF 3 PHARMACOLOGICALLY ACTIVE-DRUGS IN ISOLATED HUMAN AND RAT HEPATOCYTES - ANALYSIS OF INTERSPECIES VARIABILITY AND COMPARISON WITH METABOLISM IN-VIVO [J].
SANDKER, GW ;
VOS, RME ;
DELBRESSINE, LPC ;
SLOOFF, MJH ;
MEIJER, DKF ;
GROOTHUIS, GMM .
XENOBIOTICA, 1994, 24 (02) :143-155
[42]   High conservation of both phase I and II drug-metabolizing activities in cryopreserved rat liver slices [J].
Sohlenius-Sternbeck, AK ;
Floby, E ;
Svedling, M ;
Orzechowski, A .
XENOBIOTICA, 2000, 30 (09) :891-903
[43]   Cryopreservation of rat precision-cut liver slices by ultrarapid freezing - Influence on phase I and II metabolism and on cell viability upon incubation for 24 hours [J].
Vanhulle, VP ;
Martiat, GA ;
Verbeeck, RK ;
Horsmans, Y ;
Calderon, PB ;
Eeckhoudt, SL ;
Taper, HS ;
Delzenne, N .
LIFE SCIENCES, 2001, 68 (21) :2391-2403
[44]  
VICKERS AEM, 1995, DRUG METAB DISPOS, V23, P327
[45]   Metabolic viability and pharmaco-toxicological reactivity of cryopreserved human precision-cut renal cortical slices [J].
Vittorelli, A ;
Gauthier, C ;
Michoudet, C ;
Baverel, G .
TOXICOLOGY IN VITRO, 2004, 18 (03) :285-292
[46]   BIOTRANSFORMATION ACTIVITY IN VITRIFIED HUMAN LIVER SLICES [J].
WISHNIES, SM ;
PARRISH, AR ;
SIPES, IG ;
GANDOLFI, AJ ;
PUTNAM, CW ;
KRUMDIECK, CL ;
BRENDEL, K .
CRYOBIOLOGY, 1991, 28 (03) :216-226
[47]   Inhibition of bacterial ice nucleation by polyglycerol polymers [J].
Wowk, B ;
Fahy, GM .
CRYOBIOLOGY, 2002, 44 (01) :14-23
[48]   Vitrification enhancement by synthetic ice blocking agents [J].
Wowk, B ;
Leitl, E ;
Rasch, CM ;
Mesbah-Karimi, N ;
Harris, SB ;
Fahy, GM .
CRYOBIOLOGY, 2000, 40 (03) :228-236
[49]   Mechanisms of cryoinjury and cryoprotection in split-thickness skin [J].
Zieger, MAJ ;
Tredget, EE ;
McGann, LE .
CRYOBIOLOGY, 1996, 33 (03) :376-389