The maximal entangled three-particle state is unique

被引:38
作者
Schlienz, J
Mahler, G
机构
[1] Inst. für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart
关键词
D O I
10.1016/S0375-9601(96)00803-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A classification scheme for entangled states is proposed and applied to the maximal entangled state of three two-level systems. The surprising result is that the corresponding single-particle properties determine this class uniquely. This sheds new light on the interpretation of nonlocality.
引用
收藏
页码:39 / 44
页数:6
相关论文
共 23 条
[1]  
[Anonymous], 1995, QUANTUM NETWORKS DYN
[2]   ENTROPY INEQUALITIES [J].
ARAKI, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 18 (02) :160-&
[3]  
Bell JS., 1964, Phys. Phys. Fiz., V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
[4]  
BENETT CH, 1992, PHYS REV LETT, V69, P2881
[5]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[6]   ENTANGLED QUANTUM-SYSTEMS AND THE SCHMIDT DECOMPOSITION [J].
EKERT, A ;
KNIGHT, PL .
AMERICAN JOURNAL OF PHYSICS, 1995, 63 (05) :415-423
[7]   PAIRS OF 2-LEVEL SYSTEMS [J].
FANO, U .
REVIEWS OF MODERN PHYSICS, 1983, 55 (04) :855-874
[8]   REMARKABLE PHASE OSCILLATIONS APPEARING IN THE LATTICE-DYNAMICS OF EINSTEIN-PODOLSKY-ROSEN STATES [J].
FIVEL, DI .
PHYSICAL REVIEW LETTERS, 1995, 74 (06) :835-838
[9]  
FUJITA S, 1983, INTRO NONEQUILIBRIUM
[10]  
Greenberger D. M., 1989, BELLS THEOREM QUANTU, P73