A three-dimensional two-phase flow model for a liquid-fed direct methanol fuel cell

被引:52
作者
Ge, Jiabin [1 ]
Liu, Hongtan [1 ]
机构
[1] Univ Miami, Dept Mech & Aerosp Engn, Coral Gables, FL 33124 USA
关键词
DMFC; fuel cell; fuel cell model;
D O I
10.1016/j.jpowsour.2006.10.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A three-dimensional, two-phase, multi-component model has been developed for a liquid-fed DMFC. The modeling domain consists of the membrane, two catalyst layers, two diffusion layers, and two channels. Both liquid and gas phases are considered in the entire anode, including the channel, the diffusion layer and the catalyst layer; while at the cathode, two phases are considered in the gas diffusion layer and the catalyst layer but only single gas phase is considered in the channels. For electrochemical kinetics, the Tafel equation incorporating the effects of two phases is used at both the cathode and anode sides. At the anode side the presence of gas phase reduces the active catalyst areas, while at the cathode side the presence of liquid water reduces the active catalyst areas. The mixed potential effects due to methanol crossover are also included in the model. The results from the two-phase flow mode fit the experimental results better than those from the single-phase model. The modeling results show that the single-phase models over-predict methanol crossover. The modeling results also show that the porosity of the anode diffusion layer plays an important role in the DMFC performance. With low diffusion layer porosity, the produced carbon dioxide cannot be removed effectively from the catalyst layer, thus reducing the active catalyst area as well as blocking methanol from reaching the reaction zone. A similar effect exits in the cathode for the liquid water. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:907 / 915
页数:9
相关论文
共 26 条
[1]   Modelling pressure distribution and anode/cathode streams vapour-liquid equilibrium composition in liquid feed direct methanol fuel cells [J].
Argyropoulos, P ;
Scott, K ;
Taama, WM .
CHEMICAL ENGINEERING JOURNAL, 2000, 78 (01) :29-41
[2]   Carbon dioxide evolution patterns in direct methanol fuel cells [J].
Argyropoulos, P ;
Scott, K ;
Taama, WM .
ELECTROCHIMICA ACTA, 1999, 44 (20) :3575-3584
[3]   Methanol fuel cell model: Anode [J].
Baxter, SF ;
Battaglia, VS ;
White, RE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (02) :437-447
[4]   A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell [J].
Berning, T ;
Djilali, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) :A1589-A1598
[5]   Reduced two-dimensional one-phase model for analysis of the anode of a DMFC [J].
Birgersson, E ;
Nordlund, J ;
Ekström, H ;
Vynnycky, M ;
Lindbergh, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (10) :A1368-A1376
[6]   A multiphase mixture model for multiphase, multicomponent transport in capillary porous media .2. Numerical simulation of the transport of organic compounds in the subsurface [J].
Cheng, P ;
Wang, CY .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1996, 39 (17) :3619-3632
[7]   The degree and effect of methanol crossover in the direct methanol fuel cell [J].
Cruickshank, J ;
Scott, K .
JOURNAL OF POWER SOURCES, 1998, 70 (01) :40-47
[8]   Performance modeling of a direct methanol fuel cell [J].
Divisek, J ;
Fuhrmann, J ;
Gärtner, K ;
Jung, R .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) :A811-A825
[9]   Development of a compact 500 W class direct methanol fuel cell stack [J].
Dohle, H ;
Schmitz, H ;
Bewer, T ;
Mergel, J ;
Stolten, D .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :313-322
[10]   Experimental studies of a direct methanol fuel cell [J].
Ge, JB ;
Liu, HT .
JOURNAL OF POWER SOURCES, 2005, 142 (1-2) :56-69