Modifying the OPLS-AA force field to improve hydration free energies for several amino acid side chains using new atomic charges and an off-plane charge model for aromatic residues

被引:42
作者
Xu, Zhitao [1 ]
Luo, Harry H. [1 ]
Tieleman, D. Peter [1 ]
机构
[1] Univ Calgary, Dept Biol Sci, Calgary, AB T2N 1N4, Canada
关键词
tryptophan; OPLS-AA force field; free energy of hydration; MD simulation; tryptophan zipper (Trpzip2);
D O I
10.1002/jcc.20560
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The hydration free energies of amino acid side chains are an important determinant of processes that involve partitioning between different environments, including protein folding, protein complex formation, and protein-membrane interactions. Several recent papers have shown that calculated hydration free energies for polar and aromatic residues (Trp, His, Tyr, Asn, Gln, Asp, Glu) in several common molecular dynamics force fields differ significantly from experimentally measured values. We have attempted to improve the hydration energies for these residues by modifying the partial charges of the OPLS-AA force field based on natural population analysis of density functional theory calculations. The resulting differences between calculated hydration free energies and experimental results for the seven side chain analogs are less than 0.1 kcal/mol. Simulations of the synthetic Trp-rich peptide Trpzip2 show that the new charges lead to significantly improved geometries for interacting Trp-side chains. We also investigated an off-plane charge model for aromatic rings that more closely mimics their electronic configuration. This model results in an improved free energy of hydration for Trp and a somewhat altered benzene-sodium potential of mean force with a more favorable energy for direct benzene-sodium contact. (C) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:689 / 697
页数:9
相关论文
共 47 条
[1]  
BATTAGLIA MR, 1981, CHEM PHYS LETT, V78, P420
[2]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[3]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[4]   Tryptophan zippers:: Stable, monomeric β-hairpins [J].
Cochran, AG ;
Skelton, NJ ;
Starovasnik, MA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (10) :5578-5583
[5]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[6]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092
[7]   Dissecting contributions to the denaturant sensitivities of proteins [J].
Dempsey, CE ;
Piggot, TJ ;
Mason, PE .
BIOCHEMISTRY, 2005, 44 (02) :775-781
[8]   DOMINANT FORCES IN PROTEIN FOLDING [J].
DILL, KA .
BIOCHEMISTRY, 1990, 29 (31) :7133-7155
[9]   A SMOOTH PARTICLE MESH EWALD METHOD [J].
ESSMANN, U ;
PERERA, L ;
BERKOWITZ, ML ;
DARDEN, T ;
LEE, H ;
PEDERSEN, LG .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (19) :8577-8593
[10]  
Feenstra KA, 1999, J COMPUT CHEM, V20, P786, DOI 10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO