Distinct genomic profiles in hereditary breast tumors identified by array-based comparative genomic hybridization

被引:124
作者
Jönsson, G
Naylor, TL
Vallon-Christersson, J
Staaf, J
Huang, J
Ward, MR
Greshock, JD
Luts, L
Olsson, H
Rahman, N
Stratton, A
Ringnér, M
Borg, Å
Weber, BL
机构
[1] Univ Lund Hosp, Dept Oncol, S-22185 Lund, Sweden
[2] Lund Strat Res Ctr Stem Cell Biol & Cell Therapy, Lund, Sweden
[3] Lund Univ, Dept Theoret Phys, S-22362 Lund, Sweden
[4] Univ Lund Hosp, Dept Pathol, S-22185 Lund, Sweden
[5] Univ Penn, Abraham Family Canc Res Inst, Philadelphia, PA 19104 USA
[6] Inst Canc Res, Sect Canc Genet, Sutton, Surrey, England
关键词
D O I
10.1158/0008-5472.CAN-05-0570
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Mutations in BRCA1 and BRCA2 account for a significant proportion of hereditary breast cancers. Earlier studies have shown that inherited and sporadic tumors progress along different somatic genetic pathways and that global gene expression profiles distinguish between these groups. To determine whether genomic profiles similarly discriminate among BRCA1, BRCA2, and sporadic tumors, we established DNA copy number profiles using comparative genomic hybridization to BAC-clone microarrays providing <1 Mb resolution. Tumor DNA was obtained from BRCA1 (n = 14) and BRCA2 (n = 12) mutation carriers, as well as sporadic cases (n = 26). Overall, BRCA1 tumors had a higher frequency. of copy number alterations than sporadic breast cancers (P = 0.00078). In particular, frequent losses on 4p, 4q, and 5q in BRCA1 tumors and frequent gains on 7p and 17q24 in BRCA2 tumors distinguish these from sporadic tumors. Distinct amplicons at 3q27.1-q27.3 were identified in BRCA1 tumors and at 17q23.3-q24.2 in BRCA2 tumors. A homozygous deletion on 5q12.1 was found in a BRCA1 tumor. Using a set of 169 BAC clones that detect significantly (P < 0.001) different frequencies of copy number changes in inherited and sporadic tumors, these could be discriminated into separate groups using hierarchical clustering. By comparing DNA copy number and RNA expression for genes in these regions, several candidate genes affected by up or down-regulation were identified. Moreover, using support vector machines, we correctly classified BRCA1 and BRCA2 tumors (P < 0.0000004 and 0.00005, respectively). Further validation may prove this tumor classifier to be useful for selecting familial breast cancer cases for further mutation screening, particularly, as these data can be obtained using archival tissue.
引用
收藏
页码:7612 / 7621
页数:10
相关论文
共 40 条
[1]   CGH-Plotter: MATLAB toolbox for CGH-data analysis [J].
Autio, R ;
Hautaniemi, S ;
Kauraniemi, P ;
Yli-Harja, O ;
Astola, J ;
Wolf, M ;
Kallioniemi, A .
BIOINFORMATICS, 2003, 19 (13) :1714-1715
[2]   Cloning of BCAS3 (17q23) and BCAS4 (20q13) genes that undergo amplification, overexpression, and fusion in breast cancer [J].
Bärlund, M ;
Monni, O ;
Weaver, JD ;
Kauraniemi, P ;
Sauter, G ;
Heiskanen, M ;
Kallioniemi, OP ;
Kallioniemi, A .
GENES CHROMOSOMES & CANCER, 2002, 35 (04) :311-317
[3]   Knowledge-based analysis of microarray gene expression data by using support vector machines [J].
Brown, MPS ;
Grundy, WN ;
Lin, D ;
Cristianini, N ;
Sugnet, CW ;
Furey, TS ;
Ares, M ;
Haussler, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :262-267
[4]   Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase [J].
Bryant, HE ;
Schultz, N ;
Thomas, HD ;
Parker, KM ;
Flower, D ;
Lopez, E ;
Kyle, S ;
Meuth, M ;
Curtin, NJ ;
Helleday, T .
NATURE, 2005, 434 (7035) :913-917
[5]   Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy [J].
Farmer, H ;
McCabe, N ;
Lord, CJ ;
Tutt, ANJ ;
Johnson, DA ;
Richardson, TB ;
Santarosa, M ;
Dillon, KJ ;
Hickson, I ;
Knights, C ;
Martin, NMB ;
Jackson, SP ;
Smith, GCM ;
Ashworth, A .
NATURE, 2005, 434 (7035) :917-921
[6]   Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families [J].
Ford, D ;
Easton, DF ;
Stratton, M ;
Narod, S ;
Goldgar, D ;
Devilee, P ;
Bishop, DT ;
Weber, B ;
Lenoir, G ;
Chang-Claude, J ;
Sobol, H ;
Teare, MD ;
Struewing, J ;
Arason, A ;
Scherneck, S ;
Peto, J ;
Rebbeck, TR ;
Tonin, P ;
Neuhausen, S ;
Barkardottir, R ;
Eyfjord, J ;
Lynch, H ;
Ponder, BAJ ;
Gayther, SA ;
Birch, JM ;
Lindblom, A ;
Stoppa-Lyonnet, D ;
Bignon, Y ;
Borg, A ;
Hamann, U ;
Haites, N ;
Scott, RJ ;
Maugard, CM ;
Vasen, H .
AMERICAN JOURNAL OF HUMAN GENETICS, 1998, 62 (03) :676-689
[7]  
Greshock J, 2004, GENOME RES, V14, P179
[8]   The gene encoding phosphodiesterase 4D confers risk of ischemic stroke [J].
Gretarsdottir, S ;
Thorleifsson, G ;
Reynisdottir, ST ;
Manolescu, A ;
Jonsdottir, S ;
Jonsdottir, T ;
Gudmundsdottir, T ;
Bjarnadottir, SM ;
Einarsson, OB ;
Gudjonsdottir, HM ;
Hawkins, M ;
Gudmundsson, G ;
Gudmundsdottir, H ;
Andrason, H ;
Gudmundsdottir, AS ;
Sigurdardottir, M ;
Chou, TT ;
Nahmias, J ;
Goss, S ;
Sveinbjörnsdottir, S ;
Valdimarsson, EM ;
Jakobsson, F ;
Agnarsson, U ;
Gudnason, V ;
Thorgeirsson, G ;
Fingerle, J ;
Gurney, M ;
Gudbjartsson, D ;
Frigge, ML ;
Kong, A ;
Stefansson, K ;
Gulcher, JR .
NATURE GENETICS, 2003, 35 (02) :131-138
[9]   Gene-expression profiles in hereditary breast cancer. [J].
Hedenfalk, I ;
Duggan, D ;
Chen, YD ;
Radmacher, M ;
Bittner, M ;
Simon, R ;
Meltzer, P ;
Gusterson, B ;
Esteller, M ;
Kallioniemi, OP ;
Wilfond, B ;
Borg, Å ;
Trent, J ;
Raffeld, M ;
Yakhini, Z ;
Ben-Dor, A ;
Dougherty, E ;
Kononen, J ;
Bubendorf, L ;
Fehrle, W ;
Pittaluga, S ;
Gruvberger, S ;
Loman, N ;
Johannsoson, O ;
Olsson, H ;
Sauter, G .
NEW ENGLAND JOURNAL OF MEDICINE, 2001, 344 (08) :539-548
[10]   Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines [J].
Heidenblad, M ;
Schoenmakers, EFPM ;
Jonson, T ;
Gorunova, L ;
Veltman, JA ;
van Kessel, AG ;
Höglund, M .
CANCER RESEARCH, 2004, 64 (09) :3052-3059