Nanostructured sol-gel electrodes for biofuel cells

被引:54
作者
Lim, James [1 ]
Malati, Peter [1 ]
Bonet, Francois [1 ]
Dunn, Bruce [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
关键词
D O I
10.1149/1.2404904
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The fabrication of nanostructured electrodes for enzymatic glucose-oxygen biofuel cells is reported. The electrodes are based on enzyme encapsulation in sol-gel silica matrices and incorporate carbon nanotubes within the matrix to provide enhanced electronic conduction. The silica matrix is designed to be sufficiently porous that both glucose and oxygen have access to the enzymes and yet provides a protective cage for immobilizing the biomolecules without affecting biological function. Voltammetry experiments indicate that the effect of the silica matrix on mediator diffusion is minimal, although for one mediator, 2,2'-azino-bis ( 3-ethylbenzothiazoline-6-sulfonic acid ) diammonium salt, chemical modification of the solvent phase with polyethylene glycol is necessary. The polyethylene glycol addition also results in a more uniform dispersion of the carbon nanotubes. The enzymes maintain their biocatalytic activity in the sol-gel matrix. A glucose- oxygen biofuel cell based on the nanostructured silica sol-gel/carbon nanotube composite electrodes generates similar to 120 mu W/cm(2) at 0.24 V when operated at room temperature. (c) 2006 The Electrochemical Society.
引用
收藏
页码:A140 / A145
页数:6
相关论文
共 35 条
[1]   Development of alcohol/O2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafion membranes to immobilize dehydrogenase enzymes [J].
Akers, NL ;
Moore, CM ;
Minteer, SD .
ELECTROCHIMICA ACTA, 2005, 50 (12) :2521-2525
[2]   ELECTROCHEMICAL PROBING OF THE ACTIVITY OF GLUCOSE-OXIDASE EMBEDDED SOL-GEL MATRICES [J].
AUDEBERT, P ;
DEMAILLE, C ;
SANCHEZ, C .
CHEMISTRY OF MATERIALS, 1993, 5 (07) :911-913
[3]   Enzymatic biofuel cells for Implantable and microscale devices [J].
Barton, SC ;
Gallaway, J ;
Atanassov, P .
CHEMICAL REVIEWS, 2004, 104 (10) :4867-4886
[4]   CATALYSIS AND MASS-TRANSPORT IN SPATIALLY ORDERED ENZYME ASSEMBLIES ON ELECTRODES [J].
BOURDILLON, C ;
DEMAILLE, C ;
MOIROUX, J ;
SAVEANT, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (46) :11499-11506
[5]  
BOURDILLON C, 1993, J AM CHEM SOC, V115, P2
[6]   Encapsulation of functional cells by sol-gel silica: actual progress and perspectives for cell therapy [J].
Carturan, G ;
Dal Toso, R ;
Boninsegna, S ;
Dal Monte, R .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (14) :2087-2098
[7]   Stability of oxidases immobilized in silica gels [J].
Chen, Q ;
Kenausis, GL ;
Heller, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (19) :4582-4585
[8]   Diffusion coefficients of redox probes encapsulated within sol-gel derived silica monoliths measured with ultramicroelectrodes [J].
Collinson, MM ;
Zambrano, PJ ;
Wang, HM ;
Taussig, JS .
LANGMUIR, 1999, 15 (03) :662-668
[9]   SOL-GEL ENCAPSULATION METHODS FOR BIOSENSORS [J].
DAVE, BC ;
DUNN, B ;
VALENTINE, JS ;
ZINK, JI .
ANALYTICAL CHEMISTRY, 1994, 66 (22) :A1120-A1127
[10]   PRELIMINARY EXPERIMENTS ON A MICROBIAL FUEL CELL [J].
DAVIS, JB ;
YARBROUGH, HF .
SCIENCE, 1962, 137 (3530) :615-&