Rechargeable Ni-Li Battery Integrated Aqueous/Nonaqueous System

被引:102
作者
Li, Huiqiao [1 ]
Wang, Yonggang [1 ]
Na, Haitao [1 ]
Liu, Haimei [1 ]
Zhou, Haoshen [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, Tsukuba, Ibaraki 3058568, Japan
关键词
LITHIUM BATTERIES; AIR;
D O I
10.1021/ja906529g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A rechargeable Ni-Li battery, in which nickel hydroxide serving as a cathode in an aqueous electrolyte and Li metal serving as an anode in an organic electrolyte were integrated by a superionic conductor glass ceramic film (LISICON), was proposed with the expectation to combine the advantages of both a Li-ion battery and Ni-MH battery. It has the potential for an ultrahigh theoretical energy density of 935 Wh/kg, twice that of a Li-ion battery (414 Wh/kg), based on the active material in electrodes. A prototype Ni-Li battery fabricated in the present work demonstrated a cell voltage of 3.47 V and a capacity of 264 mAh/g with good retention during 50 cycles of charge/discharge. This battery system with a hybrid electrolyte provides a new avenue for the best combination of electrode/electrolyte/electrode to fulfill the potential of high energy density as well as high power density.
引用
收藏
页码:15098 / +
页数:5
相关论文
共 19 条
[1]   Electrochemical and thermal behavior of LiNi1-zMzO2 (M = Co, Mn, Ti) [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (09) :3117-3125
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[4]   STUDIES CONCERNING CHARGED NICKEL-HYDROXIDE ELECTRODES .1. MEASUREMENT OF REVERSIBLE POTENTIALS [J].
BARNARD, R ;
RANDELL, CF ;
TYE, FL .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1980, 10 (01) :109-125
[5]   Combination of Lightweight Elements and Nanostructured Materials for Batteries [J].
Chen, Jun ;
Cheng, Fangyi .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (06) :713-723
[6]   THERMAL-STABILITY OF LIXCOO2, LIXNIO2 AND LAMBDA-MNO2 AND CONSEQUENCES FOR THE SAFETY OF LI-ION CELLS [J].
DAHN, JR ;
FULLER, EW ;
OBROVAC, M ;
VONSACKEN, U .
SOLID STATE IONICS, 1994, 69 (3-4) :265-270
[7]   Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4 [J].
Gibot, Pierre ;
Casas-Cabanas, Montse ;
Laffont, Lydia ;
Levasseur, Stephane ;
Carlach, Philippe ;
Hamelet, Stephane ;
Tarascon, Jean-Marie ;
Masquelier, Christian .
NATURE MATERIALS, 2008, 7 (09) :741-747
[8]   Study on lithium/air secondary batteries-Stability of NASICON-type lithium ion conducting glass-ceramics with water [J].
Hasegawa, Satoshi ;
Imanishi, Nobuyuki ;
Zhang, Tao ;
Xie, Jian ;
Hirano, Atsushi ;
Takeda, Yasuo ;
Yamamoto, Osamu .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :371-377
[9]   Battery materials for ultrafast charging and discharging [J].
Kang, Byoungwoo ;
Ceder, Gerbrand .
NATURE, 2009, 458 (7235) :190-193
[10]   RECHARGEABLE LITHIUM BATTERIES WITH AQUEOUS-ELECTROLYTES [J].
LI, W ;
DAHN, JR ;
WAINWRIGHT, DS .
SCIENCE, 1994, 264 (5162) :1115-1118