Experiments with new stochastic global optimization search techniques

被引:29
作者
Özdamar, L
Demirhan, M
机构
[1] Istanbul Kultur Univ, Dept Comp Engn, TR-80280 Istanbul, Turkey
[2] Yeditepe Univ, Dept Syst Engn, Istanbul, Turkey
关键词
probabilistic search methods; global optimization; adaptive partitioning algorithms; fuzzy measures;
D O I
10.1016/S0305-0548(99)00054-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper several probabilistic search techniques are developed for global optimization under three heuristic classifications: simulated annealing, clustering methods and adaptive partitioning algorithms. The algorithms proposed here combine different methods found in the literature and they are compared with well-established approaches in the corresponding areas. Computational results are obtained on 77 small to moderate size (up to 10 variables) nonlinear test functions with simple bounds and Is large size test functions (up to 400 variables) collected from literature.
引用
收藏
页码:841 / 865
页数:25
相关论文
共 69 条
[61]  
STRELTSOV S, 1995, GLOBAL OPTIMIZATION
[62]   A COMPARISON OF BAYESIAN SAMPLING GLOBAL OPTIMIZATION TECHNIQUES [J].
STUCKMAN, BE ;
EASOM, EE .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1992, 22 (05) :1024-1032
[63]  
TORN A, 1989, LECT NOTES COMPUT SC, V350, P1
[64]   TOPOGRAPHICAL GLOBAL OPTIMIZATION USING PRE-SAMPLED POINTS [J].
TORN, A ;
VIITANEN, S .
JOURNAL OF GLOBAL OPTIMIZATION, 1994, 5 (03) :267-276
[65]  
Torn A. A., 1978, GLOBAL OPTIMIZATION, V2
[67]  
WODRICH M, 1997, COOPERATIVE DISTRIBU
[68]  
WOOD GR, 1985, MULTIDIMENSIONAL BIS
[69]  
ZILINSKAS A, 1981, OPTIMIZATION, V12, P53