An intrinsic approach to the geodesical connectedness of stationary Lorentzian manifolds

被引:36
作者
Giannoni, F [1 ]
Piccione, P
机构
[1] Univ Aquila, Dipartimento Energet, Fac Ingn, I-67100 Laquila, Italy
[2] Univ Sao Paulo, Dept Matemat, Inst Matemat & Estatist, BR-05508 Sao Paulo, Brazil
关键词
D O I
10.4310/CAG.1999.v7.n1.a6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a variational principle for geodesics on a Lorentzian manifold M admitting a timelike Killing vector field. Using this principle and standard techniques of global nonlinear analysis we establish the existence of geodesics that join two fixed points of M, under a suitable coercivity assumption on M. Whenever M is non contractible, we also get a multiplicity result for geodesics in M joining two fixed points.
引用
收藏
页码:157 / 197
页数:41
相关论文
共 16 条
[1]  
ANTONACCI F, 1996, IN PRESS INTEGRAL DI
[2]  
Beem J K., 1996, Global Lorentzian Geometry
[3]   CONFORMAL CHANGES AND GEODESIC COMPLETENESS [J].
BEEM, JK .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 49 (02) :179-186
[4]   PSEUDOCONVEXITY AND GEODESIC CONNECTEDNESS [J].
BEEM, JK ;
PARKER, PE .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1989, 155 :137-142
[5]  
BEEM JK, 1966, CIR MAT PALERMO, V15, P223
[6]   ON THE EXISTENCE OF MULTIPLE GEODESICS IN STATIC SPACE-TIMES [J].
BENCI, V ;
FORTUNATO, D ;
GIANNONI, F .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (01) :79-102
[7]   CATEGORY OF LOOP-SPACES OF OPEN SUBSETS IN EUCLIDEAN-SPACE [J].
FADELL, E ;
HUSSEINI, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 17 (12) :1153-1161
[8]  
GIANNONI F, 1991, J FUNCT AN, V101
[9]  
Hawking S. W., 1973, The Large Scale Structure of Space-Time
[10]  
Lang S., 1985, DIFFERENTIAL MANIFOL