Error estimates on the approximate finite volume solution of convection diffusion equations with general boundary conditions

被引:55
作者
Gallouët, T
Herbin, E
Vignal, MH
机构
[1] Univ Aix Marseille 1, CMI, F-13453 Marseille 13, France
[2] Univ Toulouse 3, UFR MIG, MIP, F-31062 Toulouse 4, France
关键词
finite volume; convection diffusion equations; error estimates;
D O I
10.1137/S0036142999351388
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study here the convergence of a finite volume scheme for a diffusion convection equation on an open bounded set of R-d (d = 2 or 3) for which we consider Dirichlet, Neumann, or Robin boundary conditions. We consider unstructured meshes which include Voronoi or triangular meshes; we use for the diffusion term an "s points" (where s is the number of sides of each cell) finite volume scheme and for the convection term an upstream finite volume scheme. Assuming the exact solution at least in H-2 we prove error estimates ina discrete H-0(1) norm of order the size of the mesh. Discrete Poincare inequalities then allow one to prove error estimates in the L-2 norm.
引用
收藏
页码:1935 / 1972
页数:38
相关论文
共 24 条
[1]  
[Anonymous], E W J NUMER MATH
[2]  
Baranger J, 1996, ESAIM-MATH MODEL NUM, V30, P445
[3]   A general mixed covolume framework for constructing conservative schemes for elliptic problems [J].
Chou, SH ;
Vassilevski, PS .
MATHEMATICS OF COMPUTATION, 1999, 68 (227) :991-1011
[4]  
Coudière Y, 1999, RAIRO-MATH MODEL NUM, V33, P493
[5]  
COUDIERE Y, UNPUB LP LINFINITY E
[6]   Convergence of finite volume schemes for semilinear convection diffusion equations [J].
Eymard, R ;
Gallouët, T ;
Herbin, R .
NUMERISCHE MATHEMATIK, 1999, 82 (01) :91-116
[7]  
EYMARD R, HDB NUMER ANAL
[8]  
HEINRICH B, 1987, INT SER NUMER MATH, V82
[9]  
HERBIN R, 1995, NUMER METH PART D E, V11, P165, DOI DOI 10.1002/NUM.1690110205.URL
[10]  
HERBIN R, 1996, FINITE VOLUMES COMPL, P153