DSL ligand endocytosis physically dissociates Notch 1 heterodimers before activating proteolysis can occur

被引:189
作者
Nichols, James T.
Miyamoto, Alison
Olsen, Samantha L.
D'Souza, Brendan
Yao, Christine
Weinmaster, Gerry [1 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Biol Chem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90095 USA
关键词
D O I
10.1083/jcb.200609014
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cleavage of Notch by furin is required to generate a mature, cell surface heterodimeric receptor that can be proteolytically activated to release its intracellular domain, which functions in signal transduction. Current models propose that ligand binding to heterodimeric Notch (hNotch) induces a disintegrin and metalloprotease (ADAM) proteolytic release of the Notch extracellular domain (NECD), which is subsequently shed and/or endocytosed by DSL ligand cells. We provide evidence for NECD release and internalization by DSL ligand cells, which, surprisingly, did not require ADAM activity. However, losses in either hNotch formation or ligand endocytosis significantly decreased NECD transfer to DSL ligand cells, as well as signaling in Notch cells. Because endocytosis-defective ligands bind hNotch, but do not dissociate it, additional forces beyond those produced through ligand binding must function to disrupt the intramolecular interactions that keep hNotch intact and inactive. Based on our findings, we propose that mechanical forces generated during DSL ligand endocytosis function to physically dissociate hNotch, and that dissociation is a necessary step in Notch activation.
引用
收藏
页码:445 / 458
页数:14
相关论文
共 43 条
[1]   AP-2/Eps15 interaction is required for receptor-mediated endocytosis [J].
Benmerah, A ;
Lamaze, C ;
Bègue, B ;
Schmid, SL ;
Dautry-Varsat, A ;
Cerf-Bensussan, N .
JOURNAL OF CELL BIOLOGY, 1998, 140 (05) :1055-1062
[2]   Intracellular cleavage of notch leads to a heterodimeric receptor on the plasma membrane [J].
Blaumueller, CM ;
Qi, HL ;
Zagouras, P ;
ArtavanisTsakonas, S .
CELL, 1997, 90 (02) :281-291
[3]   A novel proteolytic cleavage involved in Notch signaling:: The role of the disintegrin-metalloprotease TACE [J].
Brou, C ;
Logeat, F ;
Gupta, N ;
Bessia, C ;
LeBail, O ;
Doedens, JR ;
Cumano, A ;
Roux, P ;
Black, RA ;
Israël, A .
MOLECULAR CELL, 2000, 5 (02) :207-216
[4]   Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans [J].
Brown, MS ;
Ye, J ;
Rawson, RB ;
Goldstein, JL .
CELL, 2000, 100 (04) :391-398
[5]   Ligand-induced signaling in the absence of furin processing of Notch1 [J].
Bush, G ;
diSibio, G ;
Miyamoto, A ;
Denault, JB ;
Leduc, R ;
Weinmaster, G .
DEVELOPMENTAL BIOLOGY, 2001, 229 (02) :494-502
[6]   THE BRIDE OF SEVENLESS AND SEVENLESS INTERACTION - INTERNALIZATION OF A TRANSMEMBRANE LIGAND [J].
CAGAN, RL ;
KRAMER, H ;
HART, AC ;
ZIPURSKY, SL .
CELL, 1992, 69 (03) :393-399
[7]   Why is Delta endocytosis required for effective activation of Notch? [J].
Chitnis, A .
DEVELOPMENTAL DYNAMICS, 2006, 235 (04) :886-894
[8]   INDUCTION OF MUTANT DYNAMIN SPECIFICALLY BLOCKS ENDOCYTIC COATED VESICLE FORMATION [J].
DAMKE, H ;
BABA, T ;
WARNOCK, DE ;
SCHMID, SL .
JOURNAL OF CELL BIOLOGY, 1994, 127 (04) :915-934
[9]   Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2 [J].
Hicks, C ;
Johnston, SH ;
diSibio, G ;
Collazo, A ;
Vogt, TF ;
Weinmaster, G .
NATURE CELL BIOLOGY, 2000, 2 (08) :515-520
[10]   A secreted Delta1-Fc fusion protein functions both as an activator and inhibitor of Notch1 signaling [J].
Hicks, C ;
Ladi, E ;
Lindsell, C ;
Hsieh, JJD ;
Hayward, SD ;
Collazo, A ;
Weinmaster, G .
JOURNAL OF NEUROSCIENCE RESEARCH, 2002, 68 (06) :655-667