Hierarchical Assembly of ZnO Nanostructures on SnO2 Backbone Nanowires: Low-Temperature Hydrothermal Preparation and Optical Properties

被引:255
作者
Cheng, Chuanwei [1 ]
Liu, Bo [1 ]
Yang, Huiying [2 ]
Zhou, Weiwei [1 ]
Sun, Li [1 ]
Chen, Rui [1 ]
Yu, Siu Fung [2 ]
Zhang, Jixuan [3 ]
Gong, Hao [3 ]
Sun, Handong [1 ]
Fan, Hong Jin [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Div Microelect, Singapore 639798, Singapore
[3] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117576, Singapore
关键词
nanowire; branch hierarchical; ZnO; SnO2; hydrothermal; lasing; GROWTH; NANORODS; FABRICATION; NUCLEATION; NANOTUBES; SURFACE; ARRAYS; ROUTE;
D O I
10.1021/nn900848x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hierarchical nanostructures with SnO2 backbones and ZnO branches are successfully prepared in a large scale by combining the vapor transport and deposition process (for SnO2 nanowires) and a hydrothermal growth (for ZnO). The ZnO nanorods grow epitaxially on the SnO2 nanowire side faces mainly with a four-fold symmetry. The number density and morphology of the secondary ZnO can be tailored by changing the precursor concentration, reaction time, and by adding surfactants. Photoluminescence (PL) properties are studied as a function of temperature and pumping power. Such hybrid SnO2-ZnO nanostructures show an enhanced near-band gap emission compared with the primary SnO2 nanowires. Under the optical excitation, a UV random lasing is observed which originates from the hierarchically assembled ZnO branches. These three-dimensional nanostructures may have application potentials as chemical, sensors, battery electrodes, and optoelectronic devices.
引用
收藏
页码:3069 / 3076
页数:8
相关论文
共 48 条
  • [1] Broadband ZnO single-nanowire light-emitting diode
    Bao, Jiming
    Zimmler, Mariano A.
    Capasso, Federico
    Wang, Xiaowei
    Ren, Z. F.
    [J]. NANO LETTERS, 2006, 6 (08) : 1719 - 1722
  • [2] IMPURITY TRANSITIONS IN THE PHOTO-LUMINESCENCE SPECTRA OF SNO2
    BLATTNER, G
    KLINGSHIRN, C
    HELBIG, R
    [J]. SOLID STATE COMMUNICATIONS, 1980, 33 (03) : 341 - 344
  • [3] Random Lasers with coherent feedback
    Cao, H
    Xu, JYY
    Ling, Y
    Burin, AL
    Seeling, EW
    Liu, X
    Chang, RPH
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2003, 9 (01) : 111 - 119
  • [4] Fabricating ZnO nanorods sensor for chemical gas detection at room temperature
    Cheng, Chuanwei
    Xu, Guoyue
    Zhang, Haiqian
    Luo, Yan
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (12) : 4439 - 4442
  • [5] Growth of GaP nanotree structures by sequential seeding of 1D nanowires
    Dick, KA
    Deppert, K
    Mårtensson, T
    Seifert, W
    Samuelson, L
    [J]. JOURNAL OF CRYSTAL GROWTH, 2004, 272 (1-4) : 131 - 137
  • [6] Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events
    Dick, KA
    Deppert, K
    Larsson, MW
    Mårtensson, T
    Seifert, W
    Wallenberg, LR
    Samuelson, L
    [J]. NATURE MATERIALS, 2004, 3 (06) : 380 - 384
  • [7] Single-nanowire electrically driven lasers
    Duan, XF
    Huang, Y
    Agarwal, R
    Lieber, CM
    [J]. NATURE, 2003, 421 (6920) : 241 - 245
  • [8] Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices
    Duan, XF
    Huang, Y
    Cui, Y
    Wang, JF
    Lieber, CM
    [J]. NATURE, 2001, 409 (6816) : 66 - 69
  • [9] Fan HJ, 2008, J MATER SCI TECHNOL, V24, P589
  • [10] Semiconductor nanowires: From self-organization to patterned growth
    Fan, HJ
    Werner, P
    Zacharias, M
    [J]. SMALL, 2006, 2 (06) : 700 - 717