Fas-activated serine/threonine kinase (FAST K) synergizes with TIA-1/TIAR proteins to regulate fas alternative splicing

被引:67
作者
Izquierdo, Jose M. [1 ]
Valcarcel, Juan
机构
[1] Univ Autonoma Madrid, Ctr Biol Mol Severo Ochoa, Fac Ciencias, Modulo CV,Lab 230, Madrid 28049, Spain
[2] Univ Pompeu Fabra, Barcelona 08003, Spain
[3] ICREA, Barcelona 08003, Spain
[4] Ctr Regulacio Genom, Barcelona 08003, Spain
关键词
D O I
10.1074/jbc.C600198200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The factors and mechanisms that mediate the effects of intracellular signaling cascades on alternative pre-mRNA splicing are poorly understood. TIA-1 (T-cellintracellular antigen1) and TIAR (TIA-1-related) proteins regulate alternative pre-mRNA splicing by promoting the use of suboptimal 5' splice sites followed by uridine-rich intronic enhancer sequences. These proteins promote, for example, inclusion of Fas receptor exon 6, which leads to an mRNA encoding a pro-apoptotic form of the receptor at the expense of the form that skips exon 6, which encodes an anti-apoptotic form. Fas-activated serine/threonine kinase (FAST K) is known to interact with and phosphorylate TIA-1. Here we have tested the possibility that FAST K influences alternative pre-mRNA splicing by affecting the activity of TIA-1/TIAR. Depletion of FAST K form Jurkat cells leads to skipping of exon 6 from endogenous Fas transcripts. Conversely, FAST K overexpression enhances exon 6 inclusion of Fas reporters transfected in HeLa cells. Consistent with the possibility that the effects of FAST K are mediated by changes in the function of TIA-1/TIAR, the effects of FAST K overexpression (i) are largely suppressed by depletion of TIA-1 and TIAR and (ii) are significantly compromised by mutation of a TIA-1/TIAR-responsive enhancer present downstream of exon 6 5' splice site. Furthermore, in vitro phosphorylation of TIA-1 by FAST K results in enhanced U1 snRNP recruitment. Interestingly, this enhancement is not due to increased binding of TIA-1 to the pre-mRNA. Taken together, the results connect Fas signaling with the activity of splicing factors that modulate Fas alternative splicing, suggesting the existence of an autoregulatory loop that could serve to amplify Fas responses.
引用
收藏
页码:1539 / 1543
页数:5
相关论文
共 22 条
[1]   Structure, tissue distribution and genomic organization of the murine RRM-type RNA binding proteins TIA-1 and TIAR [J].
Beck, ARP ;
Medley, QG ;
OBrien, S ;
Anderson, P ;
Streuli, M .
NUCLEIC ACIDS RESEARCH, 1996, 24 (19) :3829-3835
[2]   Genetic disorders of programmed cell death in the immune system [J].
Bidere, Nicolas ;
Su, Helen C. ;
Lenardo, Michael J. .
ANNUAL REVIEW OF IMMUNOLOGY, 2006, 24 :321-352
[3]   Mechanisms of alternative pre-messenger RNA splicing [J].
Black, DL .
ANNUAL REVIEW OF BIOCHEMISTRY, 2003, 72 :291-336
[4]   Alternative splicing: New insights from global analyses [J].
Blencowe, Benjamin J. .
CELL, 2006, 126 (01) :37-47
[5]   PROTECTION FROM FAS-MEDIATED APOPTOSIS BY A SOLUBLE FORM OF THE FAS MOLECULE [J].
CHENG, JH ;
ZHOU, T ;
LIU, CD ;
SHAPIRO, JP ;
BRAUER, MJ ;
KIEFER, MC ;
BARR, PJ ;
MOUNTZ, JD .
SCIENCE, 1994, 263 (5154) :1759-1762
[6]   The RNA-binding protein TIA-1 is a novel mammalian splicing regulator acting through intron sequences adjacent to a 5′ splice site [J].
Del Gato-Konczak, F ;
Bourgeois, CF ;
Le Guiner, C ;
Kister, L ;
Gesnel, MC ;
Stévenin, J ;
Breathnach, R .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (17) :6287-6299
[7]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498
[8]   Pre-mRNA splicing and human disease [J].
Faustino, NA ;
Cooper, TA .
GENES & DEVELOPMENT, 2003, 17 (04) :419-437
[9]   The apoptosis-promoting factor TIA-1 is a regulator of alternative pre-mRNA splicing [J].
Förch, P ;
Puig, O ;
Kedersha, N ;
Martínez, C ;
Granneman, S ;
Séraphin, B ;
Anderson, P ;
Valcárcel, J .
MOLECULAR CELL, 2000, 6 (05) :1089-1098
[10]   The splicing regulator TIA-1 interacts with U1-C to promote U1 snRNP recruitment to 5′ splice sites [J].
Förch, P ;
Puig, O ;
Martínez, C ;
Séraphin, B ;
Valcárcel, J .
EMBO JOURNAL, 2002, 21 (24) :6882-6892