Bistability and torus break-up in a semiconductor laser with phase-conjugate feedback

被引:32
作者
Green, K [1 ]
Krauskopf, B
Engelborghs, K
机构
[1] Univ Bristol, Dept Engn Math, Bristol BS8 1TR, Avon, England
[2] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Louvain, Belgium
基金
英国工程与自然科学研究理事会;
关键词
lasers with delay; crisis bifurcation; continuation; unstable manifolds;
D O I
10.1016/S0167-2789(02)00656-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a detailed study of a route to chaos via quasiperiodicity on a torus in a semiconductor laser with phase-conjugate feedback. Highlighting the use of new tools that go far beyond mere simulation, we compute bifurcation diagrams and unstable manifolds of saddle periodic orbits. In this way, we show how a torus breaks up with a final sudden onset of chaos in a crisis bifurcation. We also identify regions of bistability between periodic solutions and other attractors in the system. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:114 / 129
页数:16
相关论文
共 40 条
[11]   APPLICATIONS OF OPTICAL-PHASE CONJUGATION [J].
GIULIANO, CR .
PHYSICS TODAY, 1981, 34 (04) :27-&
[12]   A behavioral approach to delay-differential systems [J].
GlusingLuerssen, H .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (02) :480-499
[13]   CHAOTIC DYNAMICS OF SEMICONDUCTOR-LASERS WITH PHASE-CONJUGATE FEEDBACK [J].
GRAY, GR ;
HUANG, D ;
AGRAWAL, GP .
PHYSICAL REVIEW A, 1994, 49 (03) :2096-2105
[14]   MODE-LOCKING IN SEMICONDUCTOR-LASERS BY PHASE-CONJUGATE OPTICAL FEEDBACK [J].
GRAY, GR ;
DETIENNE, DH ;
AGRAWAL, GP .
OPTICS LETTERS, 1995, 20 (11) :1295-1297
[15]   METAMORPHOSES OF BASIN BOUNDARIES IN NONLINEAR DYNAMIC-SYSTEMS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1986, 56 (10) :1011-1014
[16]  
GREBOGI C, 1987, PHYS REV A, V36, P11
[17]   Global bifurcations and bistability at the locking boundaries of a semiconductor laser with phase-conjugate feedback [J].
Green, K ;
Krauskopf, B .
PHYSICAL REVIEW E, 2002, 66 (01) :1-016220
[18]  
GREEN K, IN PRESS INT J BIFUR
[19]  
HAEGEMAN B, IN PRESS PHYS REV E
[20]  
HALE J. K., 2013, Introduction to functional differential equations