A characterization of degenerate tridimensional tensors

被引:1
作者
Abrescia, S [1 ]
机构
[1] Univ Bologna, Dept Math, I-40126 Bologna, Italy
关键词
D O I
10.1016/j.jpaa.2003.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We can estabilish when a tridimensional hypermatrix (tensor) defines a degenerate multilinear form by studying "degenerate points" (singular or "unexpected" points) of some determinantal schemes associated to it. More precisely, we shall prove that a tridimensional hypermatrix is degenerate if and only if the three determinantal schemes associated to it have "degenerate" points. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 8 条
[1]   Unstable hyperplanes for Steiner bundles and multidimensional matrices [J].
Ancona, Vincenzo ;
Ottaviani, Giorgio .
ADVANCES IN GEOMETRY, 2001, 1 (02) :165-192
[2]  
Burgisser P., 1997, Algebraic complexity theory
[3]   Ranks of tensors, secant varieties of Segre varieties and fat points [J].
Catalisano, MV ;
Geramita, AV ;
Gimigliano, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 355 :263-285
[4]  
Cayley A., 1848, CAMBRIDGE DUBLIN MAT, V3, P116
[5]   The Binet-Cauchy theorem for the hyperdeterminant of boundary format multi-dimensional matrices [J].
Dionisi, C ;
Ottaviani, G .
JOURNAL OF ALGEBRA, 2003, 259 (01) :87-94
[6]  
Gelfand I. M., 1994, Mathematics Theory & Applications, DOI DOI 10.1007/978-0-8176-4771-1
[7]   HYPERDETERMINANTS [J].
GELFAND, IM ;
KAPRANOV, MM ;
ZELEVINSKY, AV .
ADVANCES IN MATHEMATICS, 1992, 96 (02) :226-263
[8]   Singularities of hyperdeterminants [J].
Weyman, J ;
Zelevinsky, A .
ANNALES DE L INSTITUT FOURIER, 1996, 46 (03) :591-&