Holocene carbon cycle dynamics

被引:54
作者
Kleinen, Thomas [1 ]
Brovkin, Victor [1 ,2 ]
von Bloh, Werner [2 ]
Archer, David [3 ]
Munhoven, Guy [4 ]
机构
[1] Max Planck Inst Meteorol, D-20146 Hamburg, Germany
[2] Potsdam Inst Climate Impact Res, D-14412 Potsdam, Germany
[3] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA
[4] Univ Liege, Inst Astrophys & Geophys, LPAP, B-4000 Liege, Belgium
关键词
LAST GLACIAL MAXIMUM; INTERGLACIAL CHANGES; ATMOSPHERIC CO2; NORTH-AMERICA; TAYLOR-DOME; CLIMATE; ACCUMULATION; MODEL; VARIABILITY; VEGETATION;
D O I
10.1029/2009GL041391
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We are investigating the late Holocene rise in CO2 by performing four experiments with the climate-carbon-cycle model CLIMBER2-LPJ. Apart from the deep sea sediments, important carbon cycle processes considered are carbon uptake or release by the vegetation, carbon uptake by peatlands, and CO2 release due to shallow water sedimentation of CaCO3. Ice core data of atmospheric CO2 between 8 ka BP and preindustrial climate can only be reproduced if CO2 outgassing due to shallow water sedimentation of CaCO3 is considered. In this case the model displays an increase of nearly 20 ppmv CO2 between 8 ka BP and present day. Model configurations that do not contain this forcing show a slight decrease in atmospheric CO2. We can therefore explain the late Holocene rise in CO2 by invoking natural forcing factors only, and anthropogenic forcing is not required to understand preindustrial CO2 dynamics. Citation: Kleinen, T., V. Brovkin, W. von Bloh, D. Archer, and G. Munhoven (2010), Holocene carbon cycle dynamics, Geophys. Res. Lett., 37, L02705, doi: 10.1029/2009GL041391.
引用
收藏
页数:5
相关论文
共 30 条
[1]   A data-driven model of the global calcite lysocline [J].
Archer, D .
GLOBAL BIOGEOCHEMICAL CYCLES, 1996, 10 (03) :511-526
[2]   Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2 [J].
Barker, S ;
Elderfield, H .
SCIENCE, 2002, 297 (5582) :833-836
[3]   Climate change and Arctic ecosystems:: 1.: Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present -: art. no. 8170 [J].
Bigelow, NH ;
Brubaker, LB ;
Edwards, ME ;
Harrison, SP ;
Prentice, IC ;
Anderson, PM ;
Andreev, AA ;
Bartlein, PJ ;
Christensen, TR ;
Cramer, W ;
Kaplan, JO ;
Lozhkin, AV ;
Matveyeva, NV ;
Murray, DF ;
McGuire, AD ;
Razzhivin, VY ;
Ritchie, JC ;
Smith, B ;
Walker, DA ;
Gajewski, K ;
Wolf, V ;
Holmqvist, BH ;
Igarashi, Y ;
Kremenetskii, K ;
Paus, A ;
Pisaric, MFJ ;
Volkova, VS .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D19)
[4]   Evidence for a reduction in the carbonate ion content of the deep sea during the course of the Holocene [J].
Broecker, WS ;
Clark, E ;
McCorkle, DC ;
Peng, TH ;
Hajdas, I ;
Bonani, G .
PALEOCEANOGRAPHY, 1999, 14 (06) :744-752
[5]   Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model [J].
Brovkin, V ;
Bendtsen, J ;
Claussen, M ;
Ganopolski, A ;
Kubatzki, C ;
Petoukhov, V ;
Andreev, A .
GLOBAL BIOGEOCHEMICAL CYCLES, 2002, 16 (04)
[6]   Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry [J].
Brovkin, Victor ;
Ganopolski, Andrey ;
Archer, David ;
Rahmstorf, Stefan .
PALEOCEANOGRAPHY, 2007, 22 (04)
[7]  
CIAIS P, 2009, 8 INT CARB DIOX C M
[8]   Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core [J].
Elsig, Joachim ;
Schmitt, Jochen ;
Leuenberger, Daiana ;
Schneider, Robert ;
Eyer, Marc ;
Leuenberger, Markus ;
Joos, Fortunat ;
Fischer, Hubertus ;
Stocker, Thomas F. .
NATURE, 2009, 461 (7263) :507-510
[9]   Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions [J].
Frolking, Steve ;
Roulet, Nigel T. .
GLOBAL CHANGE BIOLOGY, 2007, 13 (05) :1079-1088
[10]   Sphagnum peatland distribution in North America and Eurasia during the past 21,000 years [J].
Gajewski, K ;
Viau, A ;
Sawada, M ;
Atkinson, D ;
Wilson, S .
GLOBAL BIOGEOCHEMICAL CYCLES, 2001, 15 (02) :297-310