Molecular analysis of the multidrug transporter, P-glycoprotein

被引:30
作者
Germann, UA
Chambers, TC
机构
[1] Vertex Pharmaceut Inc, Cambridge, MA 02139 USA
[2] Univ Arkansas Med Sci, Dept Biochem & Mol Biol, Little Rock, AR 72205 USA
关键词
ATPase; ATP-binding cassette; drug transport; multidrug resistance; P-glycoprotein; phosphorylation;
D O I
10.1023/A:1008023629269
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Inherent or acquired resistance of tumor cells to cytotoxic drugs represents a major limitation to the successful chemotherapeutic treatment of cancer. During the past three decades dramatic progress has been made in the understanding of the molecular basis of this phenomenon. Analyses of drug-selected tumor cells which exhibit simultaneous resistance to structurally unrelated anti-cancer drugs have led to the discovery of the human MDR1 gene product, P-glycoprotein, as one of the mechanisms responsible for multidrug resistance. Overexpression of this 170 kDa N-glycosylated plasma membrane protein in mammalian cells has been associated with ATP-dependent reduced drug accumulation? suggesting that P-glycoprotein may act as an energy-dependent drug efflux pump. P-glycoprotein consists of two highly homologous halves each of which contains a transmembrane domain and an ATP binding fold. This overall architecture is characteristic for members of the ATP-binding cassette or ABC super-family of transporters. Cell biological, molecular genetic and biochemical approaches have been used for structure-function studies of P-glycoprotein and analysis of its mechanism of action. This review summarizes the current status of knowledge on the domain organization, topology and higher order structure of P-glycoprotein, the location of drug- and ATP binding sites within P-glycoprotein, its ATPase and drug transport activities, its possible functions as an ion channel, ATP channel and lipid transporter, its potential role in cholesterol biosynthesis, and the effects of phosphorylation on P-glycoprotein activity.
引用
收藏
页码:31 / 60
页数:30
相关论文
共 271 条
[11]   PARTIAL-PURIFICATION AND RECONSTITUTION OF THE HUMAN MULTIDRUG-RESISTANCE PUMP - CHARACTERIZATION OF THE DRUG-STIMULATABLE ATP HYDROLYSIS [J].
AMBUDKAR, SV ;
LELONG, IH ;
ZHANG, JP ;
CARDARELLI, CO ;
GOTTESMAN, MM ;
PASTAN, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (18) :8472-8476
[12]  
AMES GF, 1992, ADV ENZYMOL RAMB, V65, P1
[13]   DEMONSTRATION THAT CFTR IS A CHLORIDE CHANNEL BY ALTERATION OF ITS ANION SELECTIVITY [J].
ANDERSON, MP ;
GREGORY, RJ ;
THOMPSON, S ;
SOUZA, DW ;
PAUL, S ;
MULLIGAN, RC ;
SMITH, AE ;
WELSH, MJ .
SCIENCE, 1991, 253 (5016) :202-205
[14]   IS THE MULTIDRUG-RESISTANCE AN ATP CHANNEL [J].
ARIAS, IM .
HEPATOLOGY, 1993, 18 (01) :216-217
[15]   ALTERED PLASMA-MEMBRANE ULTRASTRUCTURE IN MULTIDRUG-RESISTANT CELLS [J].
ARSENAULT, AL ;
LING, V ;
KARTNER, N .
BIOCHIMICA ET BIOPHYSICA ACTA, 1988, 938 (02) :315-321
[16]   Co-operative, competitive and non-competitive interactions between modulators of P-glycoprotein [J].
Ayesh, S ;
Shao, YM ;
Stein, WD .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 1996, 1316 (01) :8-18
[17]   DISCRETE MUTATIONS INTRODUCED IN THE PREDICTED NUCLEOTIDE-BINDING SITES OF THE MDR1 GENE ABOLISH ITS ABILITY TO CONFER MULTIDRUG RESISTANCE [J].
AZZARIA, M ;
SCHURR, E ;
GROS, P .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (12) :5289-5297
[18]   MODULATION OF P-GLYCOPROTEIN PHOSPHORYLATION AND DRUG TRANSPORT BY SODIUM-BUTYRATE [J].
BATES, SE ;
CURRIER, SJ ;
ALVAREZ, M ;
FOJO, AT .
BIOCHEMISTRY, 1992, 31 (28) :6366-6372
[19]   DIFFERENTIAL MODULATION OF P-GLYCOPROTEIN TRANSPORT BY PROTEIN-KINASE INHIBITION [J].
BATES, SE ;
LEE, JS ;
DICKSTEIN, B ;
SPOLYAR, M ;
FOJO, AT .
BIOCHEMISTRY, 1993, 32 (35) :9156-9164
[20]  
BAUBICHONCORTAY H, 1994, J BIOL CHEM, V269, P22983