Functionalized Multilayered Graphene Platform for Urea Sensor

被引:146
作者
Srivastava, Rajesh K. [1 ,2 ]
Srivastava, Saurabh [1 ,3 ,4 ]
Narayanan, Tharangattu N. [2 ]
Mahlotra, Bansi D. [3 ,4 ,5 ,6 ]
Vajtai, Robert [2 ]
Ajayan, Pulickel M. [2 ]
Srivastava, Anchal [1 ]
机构
[1] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India
[2] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA
[3] Natl Phys Lab, Biomed Instrumentat Sect, Dept Sci, New Delhi 110012, India
[4] Natl Phys Lab, Biomed Instrumentat Sect, Technol Ctr Biomol Elect, New Delhi 110012, India
[5] Chungnam Natl Univ, Ctr NanoBioengn & Spin Tron, Taejon 305764, South Korea
[6] Delhi Technol Univ, Dept Biotechnol, Delhi 11042, India
关键词
MWCNTs; graphene; biosensor; electron microscopy; X-ray photoelectron spectroscopy; CARBON NANOTUBE FILTERS; RAMAN-SPECTROSCOPY; FILMS; BIOSENSOR; GRAPHITE; SINGLE; SHEETS; OXIDE; ELECTROCHEMISTRY; NANORIBBONS;
D O I
10.1021/nn203210s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Multilayered graphene (MLG) Is an interesting material for electrochemical sensing and biosensing because of its very large 2D electrical conductivity and large surface area. We propose a less toxic, reproducible, and easy method for producing functionalized multilayer graphene from multiwalled carbon nanotubes (MWCNTs) in mass scale using only concentrated H2SO4/HNO3. Electron microscopy results show the MLG formation, whereas FTIR and XPS data suggest its carboxylic and hydroxyl-functionalized nature. We utilize this functionalized MLG for the fabrication of a novel amperometric urea biosensor. This biosensor shows linearity of 10-100 mg dL(-1), sensitivity of 5.43 mu A mg(-1) dL cm(-2), lower detection limit of 3.9 mg dL(-1), and response time of 10 s. Our results suggest that MLG Is a promising material for electrochemical biosensing applications.
引用
收藏
页码:168 / 175
页数:8
相关论文
共 55 条
[21]   Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors [J].
Gomez, Humberto ;
Ram, Manoj K. ;
Alvi, Farah ;
Villalba, P. ;
Stefanakos, Elias ;
Kumar, Ashok .
JOURNAL OF POWER SOURCES, 2011, 196 (08) :4102-4108
[22]   Preparation of graphene-polyaniline composites by simple chemical procedure and its improved field emission properties [J].
Goswami, S. ;
Maiti, U. N. ;
Maiti, S. ;
Nandy, S. ;
Mitra, M. K. ;
Chattopadhyay, K. K. .
CARBON, 2011, 49 (07) :2245-2252
[23]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[24]   Characterization of carbon nanotube filters and other carbonaceous materials by Raman spectroscopy - II: study on dispersion and disorder parameters [J].
Heise, H. M. ;
Kuckuk, R. ;
Srivastava, A. ;
Asthana, B. P. .
JOURNAL OF RAMAN SPECTROSCOPY, 2011, 42 (03) :294-302
[25]   Characterisation of carbonaceous materials using Raman spectroscopy: a comparison of carbon nanotube filters, single- and multi-walled nanotubes, graphitised porous carbon and graphite [J].
Heise, H. M. ;
Kuckuk, R. ;
Ojha, A. K. ;
Srivastava, A. ;
Srivastava, V. ;
Asthana, B. P. .
JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (03) :344-353
[26]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[27]   SEGREGATION ISOSTERES FOR CARBON AT (100) SURFACE OF NICKEL [J].
ISETT, LC ;
BLAKELY, JM .
SURFACE SCIENCE, 1976, 58 (02) :397-414
[28]   Narrow graphene nanoribbons from carbon nanotubes [J].
Jiao, Liying ;
Zhang, Li ;
Wang, Xinran ;
Diankov, Georgi ;
Dai, Hongjie .
NATURE, 2009, 458 (7240) :877-880
[29]   Hydrogen Sensing Using Pd-Functionalized Multi-Layer Graphene Nanoribbon Networks [J].
Johnson, Jason L. ;
Behnam, Ashkan ;
Pearton, S. J. ;
Ural, Ant .
ADVANCED MATERIALS, 2010, 22 (43) :4877-+
[30]   Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support [J].
Kamat, Prashant V. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (02) :520-527