Identification and characterization of an aliphatic amidase in Helicobacter pylori

被引:84
作者
Skouloubris, S [1 ]
Labigne, A [1 ]
DeReuse, H [1 ]
机构
[1] INST PASTEUR, UNITE PATHOGENIE BACTERIENNE MUQUEUSES, F-75724 PARIS 15, FRANCE
关键词
D O I
10.1111/j.1365-2958.1997.mmi536.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We report, for the first time, the presence in Helicobacter pylori of an aliphatic amidase that, like urease, contributes to ammonia production, Aliphatic amidases are cytoplasmic acylamide amidohydrolases (EC 3.5.1.4) hydrolysing short-chain aliphatic amides to produce ammonia and the corresponding organic acid. The finding of an aliphatic amidase in H. pylori was unexpected as this enzyme has only previously been described in bacteria of environmental (soil or water) origin. The H. pylori amidase gene amiE (1017 bp) was sequenced, and the deduced amino acid sequence of AmiE (37 746 Da) is very similar (75% identity) to the other two sequenced aliphatic amidases, one from Pseudomonas aeruginosa and one from Rhodococcus sp, R312, Amidase activity was measured as the release of ammonia by sonicated crude extracts from H. pylori strains and from recombinant Escherichia coli strains overproducing the H. pylori amidase. The substrate specificity was analysed with crude extracts from H. pylori cells grown in vitro; the best substrates were propionamide, acrylamide and acetamide, Polymerase chain reaction (PCR) amplification of an internal amiE sequence was obtained with each of 45 different H. pylori clinical isolates, suggesting that amidase is common to all H. pylori strains, A H. pylori mutant (N6-836) carrying an interrupted amiE gene was constructed by allelic exchange, No amidase activity could be detected in N6-836, In a N6-urease negative mutant, amidase activity was two-to threefold higher than in the parental strain N6, Crude extracts of strain N6 slowly hydrolysed formamide. This activity was affected in neither the amidase negative strain (N6-836) nor a double mutant strain deficient in both amidase and urease activities, suggesting the presence of an independent discrete formamidase in H. pylori, The existence of an aliphatic amidase, a correlation between the urease and amidase activities and the possible presence of a formamidase indicates that H. pylori has a large range of possibilities for intracellular ammonia production.
引用
收藏
页码:989 / 998
页数:10
相关论文
共 43 条
[1]   THE AMINO-ACID-SEQUENCE OF THE ALIPHATIC AMIDASE FROM PSEUDOMONAS-AERUGINOSA [J].
AMBLER, RP ;
AUFFRET, AD ;
CLARKE, PH .
FEBS LETTERS, 1987, 215 (02) :285-290
[2]   MICROBIAL-DEGRADATION OF NITRILE COMPOUNDS .6. PURIFICATION AND CHARACTERIZATION OF AMIDASE WHICH PARTICIPATES IN NITRILE DEGRADATION [J].
ASANO, Y ;
TACHIBANA, M ;
TANI, Y ;
YAMADA, H .
AGRICULTURAL AND BIOLOGICAL CHEMISTRY, 1982, 46 (05) :1175-1181
[3]   HYPOTHESES ON THE PATHOGENESIS AND NATURAL-HISTORY OF HELICOBACTER-PYLORI INDUCED INFLAMMATION [J].
BLASER, MJ .
GASTROENTEROLOGY, 1992, 102 (02) :720-727
[4]   A NEW FAMILY OF CARBON-NITROGEN HYDROLASES [J].
BORK, P ;
KOONIN, EV .
PROTEIN SCIENCE, 1994, 3 (08) :1344-1346
[5]   THE NUCLEOTIDE-SEQUENCE OF THE AMIE GENE OF PSEUDOMONAS-AERUGINOSA [J].
BRAMMAR, WJ ;
CHARLES, IG ;
MATFIELD, M ;
CHENGPIN, L ;
DREW, RE ;
CLARKE, PH .
FEBS LETTERS, 1987, 215 (02) :291-294
[6]   ANALYSIS OF GENE-CONTROL SIGNALS BY DNA-FUSION AND CLONING IN ESCHERICHIA-COLI [J].
CASADABAN, MJ ;
COHEN, SN .
JOURNAL OF MOLECULAR BIOLOGY, 1980, 138 (02) :179-207
[7]   EXPRESSION OF HELICOBACTER-PYLORI UREASE GENES IN ESCHERICHIA-COLI GROWN UNDER NITROGEN-LIMITING CONDITIONS [J].
CUSSAC, V ;
FERRERO, RL ;
LABIGNE, A .
JOURNAL OF BACTERIOLOGY, 1992, 174 (08) :2466-2473
[8]   EFFECT OF GASTRIC PH ON UREASE-DEPENDENT COLONIZATION OF GNOTOBIOTIC PIGLETS BY HELICOBACTER-PYLORI [J].
EATON, KA ;
KRAKOWKA, S .
INFECTION AND IMMUNITY, 1994, 62 (09) :3604-3607
[9]   CONSTRUCTION OF ISOGENIC UREASE-NEGATIVE MUTANTS OF HELICOBACTER-PYLORI BY ALLELIC EXCHANGE [J].
FERRERO, RL ;
CUSSAC, V ;
COURCOUX, P ;
LABIGNE, A .
JOURNAL OF BACTERIOLOGY, 1992, 174 (13) :4212-4217
[10]  
FRIEDRICH CG, 1981, J GEN MICROBIOL, V125, P367