Seizure prediction: Any better than chance?

被引:71
作者
Andrzejak, Ralph G. [1 ]
Chicharro, Daniel [1 ]
Elger, Christian E. [2 ]
Mormann, Florian [2 ,3 ]
机构
[1] Univ Pompeu Fabra, Dept Informat & Commun Technol, Barcelona 08018, Spain
[2] Univ Bonn, Dept Epileptol, D-5300 Bonn, Germany
[3] CALTECH, Div Biol, Pasadena, CA 91125 USA
关键词
Nonlinear dynamical EEG analysis; Epilepsy; Seizure prediction; Surrogates; Monte Carlo simulation; EPILEPTIC SEIZURES; EEG RECORDINGS; LONG; PREDICTABILITY; FRAMEWORK; ALGORITHM; SYSTEM;
D O I
10.1016/j.clinph.2009.05.019
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objective: To test whether epileptic seizure prediction algorithms have true predictive power, their performance must be compared with the one expected under well-defined null hypotheses. For this purpose, analytical performance estimates and seizure predictor surrogates were introduced. We here extend the Monte Carlo framework of seizure predictor surrogates by introducing alarm times surrogates. Methods: We construct artificial seizure time sequences and artificial seizure predictors to be consistent or inconsistent with various null hypotheses to determine the frequency of null hypothesis rejections obtained from analytical performance estimates and alarm times surrogates under controlled conditions. Results: Compared to analytical performance estimates, alarm times surrogates are more flexible with regard to the testable null hypotheses. Both approaches have similar, high statistical power to indicate true predictive power. For Poisson predictors that fulfill the null hypothesis of analytical performance estimates, the frequency of false positive null hypothesis rejections can exceed the significance level for long mean inter-alarm intervals, revealing an intrinsic bias of these analytical estimates. Conclusions: Alarm times surrogates offer important advantages over analytical performance estimates. Significance: The key question in the field of seizure prediction is whether seizures can in principle be predicted or whether algorithms which have been presumed to perform better than chance actually are unable to predict seizures and simply have not yet been tested against the appropriate null hypotheses. Alarm times surrogates can help to answer this question. (C) 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:1465 / 1478
页数:14
相关论文
共 28 条
[1]   Testing the null hypothesis of the nonexistence of a preseizure state [J].
Andrzejak, RG ;
Mormann, F ;
Kreuz, T ;
Rieke, C ;
Kraskov, A ;
Elger, CE ;
Lehnertz, K .
PHYSICAL REVIEW E, 2003, 67 (01) :4
[2]   How well can epileptic seizures be predicted? An evaluation of a nonlinear method [J].
Aschenbrenner-Scheibe, R ;
Maiwald, T ;
Winterhalder, M ;
Voss, HU ;
Timmer, J ;
Schulze-Bonhage, A .
BRAIN, 2003, 126 :2616-2626
[3]   Performance of a seizure warning algorithm based on the dynamics of intracranial EEG [J].
Chaovalitwongse, W ;
Lasemidis, LD ;
Pardalos, PM ;
Carney, PR ;
Shiau, DS ;
Sackellares, JC .
EPILEPSY RESEARCH, 2005, 64 (03) :93-113
[4]   THE EARTH IS ROUND (P-LESS-THAN.05) [J].
COHEN, J .
AMERICAN PSYCHOLOGIST, 1994, 49 (12) :997-1003
[5]   Dynamical diseases of brain systems: Different routes to epileptic seizures [J].
da Silva, FHL ;
Blanes, W ;
Kalitzin, SN ;
Parra, J ;
Suffczynski, P ;
Velis, DN .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2003, 50 (05) :540-548
[6]   Anticipation of epileptic seizures from standard EEG recordings [J].
De Clercq, W ;
Lemmerling, P ;
Van Huffel, S ;
Van Paesschen, W .
LANCET, 2003, 361 (9361) :970-970
[7]   Correlation dimension and integral do not predict epileptic seizures [J].
Harrison, MAF ;
Osorio, I ;
Frei, MG ;
Asuri, S ;
Lai, YC .
CHAOS, 2005, 15 (03)
[8]   Accumulated energy revisited [J].
Harrison, MAF ;
Frei, MG ;
Osorio, I .
CLINICAL NEUROPHYSIOLOGY, 2005, 116 (03) :527-531
[9]   Long-term prospective on-line real-time seizure prediction [J].
Iasemidis, LD ;
Shiau, DS ;
Pardalos, PM ;
Chaovalitwongse, W ;
Narayanan, K ;
Prasad, A ;
Tsakalis, K ;
Carney, PR ;
Sackellares, JC .
CLINICAL NEUROPHYSIOLOGY, 2005, 116 (03) :532-544
[10]   Adaptive epileptic seizure prediction system [J].
Iasemidis, LD ;
Shiau, DS ;
Chaovalitwongse, W ;
Sackellares, JC ;
Pardalos, PM ;
Principe, JC ;
Carney, PR ;
Prasad, A ;
Veeramani, B ;
Tsakalis, K .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2003, 50 (05) :616-627