Superfast front propagation in reactive systems with non-Gaussian diffusion

被引:38
作者
Mancinelli, R
Vergni, D
Vulpiani, A
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[2] Univ Roma La Sapienza, INFM, I-00185 Rome, Italy
[3] CNR, IAC, I-00161 Rome, Italy
来源
EUROPHYSICS LETTERS | 2002年 / 60卷 / 04期
关键词
D O I
10.1209/epl/i2002-00251-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a reactive field transported by a non-Gaussian process instead of a standard diffusion. If the process increments follow a probability distribution with exponential tails, the usual qualitative behaviour of the standard reaction diffusion system, i.e., exponential tails for the reacting. field and a constant front speed, are recovered. But, if the process has power law tails and the reaction is pulled, the reacting field shows power law tails and the front speed increases exponentially with time. The comparison with other transport processes which exhibit anomalous diffusion shows that not only the presence of anomalous diffusion, but also its detailed mechanism, is relevant for the front propagation in reactive systems.
引用
收藏
页码:532 / 538
页数:7
相关论文
共 31 条
[1]   Front propagation in laminar flows [J].
Abel, M. ;
Celani, A. ;
Vergni, D. ;
Vulpiani, A. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (4 II) :463071-463071
[2]   Reaction diffusion in fast steady flow [J].
Audoly, B ;
Berestycki, H ;
Pomeau, Y .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 2000, 328 (03) :255-262
[3]   On strong anomalous diffusion [J].
Castiglione, P ;
Mazzino, A ;
Muratore-Ginanneschi, P ;
Vulpiani, A .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 134 (01) :75-93
[4]   THEORY OF PREMIXED-FLAME PROPAGATION IN LARGE-SCALE TURBULENCE [J].
CLAVIN, P ;
WILLIAMS, FA .
JOURNAL OF FLUID MECHANICS, 1979, 90 (FEB) :589-604
[5]   Bulk burning rate in passive-reactive diffusion [J].
Constantin, P ;
Kiselev, A ;
Oberman, A ;
Ryzhik, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 154 (01) :53-91
[6]   Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts [J].
Ebert, U ;
van Saarloos, W .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 146 (1-4) :1-99
[7]   Particles and fields in fluid turbulence [J].
Falkovich, G ;
Gawedzki, K ;
Vergassola, M .
REVIEWS OF MODERN PHYSICS, 2001, 73 (04) :913-975
[8]   Front propagation into an unstable state of reaction-transport systems [J].
Fedotov, S .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :926-929
[9]   The wave of advance of advantageous genes [J].
Fisher, RA .
ANNALS OF EUGENICS, 1937, 7 :355-369
[10]   LEVY FLIGHTS IN RANDOM-ENVIRONMENTS [J].
FOGEDBY, HC .
PHYSICAL REVIEW LETTERS, 1994, 73 (19) :2517-2520