Unraveling transcription regulatory networks by protein-DNA and protein-protein interaction mapping

被引:109
作者
Walhout, Albertha J. M. [1 ]
机构
[1] Univ Massachusetts, Sch Med, Program Gene Funct & Express, Worcester, MA 01605 USA
[2] Univ Massachusetts, Sch Med, Program Mol Med, Worcester, MA 01605 USA
关键词
D O I
10.1101/gr.5321506
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Metazoan genomes contain thousands of protein-coding and noncoding RNA genes, most of which are differentially expressed, i.e., at different locations or at different times during development, function, or pathology of the organism. Differential gene expression is achieved in part by the action of regulatory transcription factors (TFs) that bind to cis-regulatory elements that are often located in or near their target genes. Each TF likely regulates many targets in the context of intricate transcription regulatory networks. Up to 10% of a genome may encode TFs, but only a handful of these have been studied in detail. Here, I will discuss the different steps involved in the mapping and analysis of transcription regulatory networks, including the identification of network nodes ( TFs and their target sequences) and edges (TF-TF dimers and TF-DNA target interactions), integration with other data types, and network properties and emerging principles that provide insights into differential gene expression.
引用
收藏
页码:1445 / 1454
页数:10
相关论文
共 86 条
[1]   Computational detection of cis-regulatory modules [J].
Aerts, Stein ;
Van Loo, Peter ;
Thijs, Gert ;
Moreau, Yves ;
De Moor, Bart .
BIOINFORMATICS, 2003, 19 :II5-II14
[2]   Error and attack tolerance of complex networks [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 2000, 406 (6794) :378-382
[3]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[4]   Structure and evolution of transcriptional regulatory networks [J].
Babu, MM ;
Luscombe, NM ;
Aravind, L ;
Gerstein, M ;
Teichmann, SA .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2004, 14 (03) :283-291
[5]   Computational discovery of gene modules and regulatory networks [J].
Bar-Joseph, Z ;
Gerber, GK ;
Lee, TI ;
Rinaldi, NJ ;
Yoo, JY ;
Robert, F ;
Gordon, DB ;
Fraenkel, E ;
Jaakkola, TS ;
Young, RA ;
Gifford, DK .
NATURE BIOTECHNOLOGY, 2003, 21 (11) :1337-1342
[6]   Network biology:: Understanding the cell's functional organization [J].
Barabási, AL ;
Oltvai, ZN .
NATURE REVIEWS GENETICS, 2004, 5 (02) :101-U15
[7]   The homeodomain protein PAL-1 specifies a lineage-specific regulatory network in the C-elegans embryo [J].
Baugh, LR ;
Hill, AA ;
Claggett, JM ;
Hill-Harfe, K ;
Wen, JC ;
Slonim, DK ;
Brown, EL ;
Hunter, CP .
DEVELOPMENT, 2005, 132 (08) :1843-1854
[8]   Ultraconserved elements in the human genome [J].
Bejerano, G ;
Pheasant, M ;
Makunin, I ;
Stephen, S ;
Kent, WJ ;
Mattick, JS ;
Haussler, D .
SCIENCE, 2004, 304 (5675) :1321-1325
[9]   Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome [J].
Bieda, M ;
Xu, XQ ;
Singer, MA ;
Green, R ;
Farnham, PJ .
GENOME RESEARCH, 2006, 16 (05) :595-605
[10]   Constructing transcriptional regulatory networks [J].
Blais, A ;
Dynlacht, BD .
GENES & DEVELOPMENT, 2005, 19 (13) :1499-1511