The canonical Kravchuk basis for discrete quantum mechanics

被引:17
作者
Hakioglu, T
Wolf, KB
机构
[1] Ctr Int Ciencias, Cuernavaca 62210, Morelos, Mexico
[2] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62251, Morelos, Mexico
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 16期
关键词
D O I
10.1088/0305-4470/33/16/318
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The well known Kravchuk formalism of the harmonic oscillator obtained from the direct discretization method is shown to be a new way of formulating discrete quantum phase space. it is shown that the Kravchuk oscillator Hamiltonian has a well defined unitary canonical partner which we identify with the quantum phase of the Kravchuk oscillator. The generalized discrete Wigner function formalism based on the action and angle variables is applied to the Kravchuk oscillator and its continuous limit is examined.
引用
收藏
页码:3313 / 3323
页数:11
相关论文
共 17 条
[1]  
[Anonymous], 1988, SPECIAL FUNCTIONS MA, DOI DOI 10.1007/978-1-4757-1595-8
[2]   Continuous vs. discrete fractional Fourier transforms [J].
Atakishiyev, NM ;
Vicent, LE ;
Wolf, KB .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 107 (01) :73-95
[3]   Fractional Fourier-Kravchuk transform [J].
Atakishiyev, NM ;
Wolf, KB .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1997, 14 (07) :1467-1477
[4]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[5]   Operational approach in the weak-field measurement of polarization fluctuations [J].
Hakioglu, T .
PHYSICAL REVIEW A, 1999, 59 (02) :1586-1602
[6]   Linear canonical transformations and quantum phase: a unified canonical and algebraic approach [J].
Hakioglu, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (22) :4111-4130
[7]   Finite-dimensional Schwinger basis, deformed symmetries, Wigner function, and an algebraic approach to quantum phase [J].
Hakioglu, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (33) :6975-6994
[8]  
HAKIOGLU T, 2000, IN PRESS J PHYS A
[9]   DISTRIBUTION-FUNCTIONS IN PHYSICS - FUNDAMENTALS [J].
HILLERY, M ;
OCONNELL, RF ;
SCULLY, MO ;
WIGNER, EP .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 106 (03) :121-167
[10]  
KOCKOCK R, 1994, 9405 DELFT U TECHN F