Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties

被引:333
作者
Dambournet, Damien [1 ]
Belharouak, Ilias [1 ]
Amine, Khalil [1 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
关键词
NANOCRYSTALLINE BROOKITE; LITHIUM INTERCALATION; NANOCOMPOSITE; PERFORMANCE; ELECTRODES; INSERTION; IMPACT; SIZE;
D O I
10.1021/cm902613h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using a simple aqueous precipitation method based on a low-cost titanium oxysulfate precursor, we have prepared three TiO2 polymorphs: anatase, rutile, and brookite. Although the anatase form can be directly obtained from the thermolysis reaction of an oxysulfate solution, the rutile and the brookite have been prepared by the addition of oxalate species. Depending on the concentration, the oxalate anions have been shown to act either as a ligand with the stabilization of a titanium oxalate hydrate, Ti2O3(H2O)(2)(C2O4) center dot H2O, or as a chelating agent with the isolation of the rutile phase. The brookite form was obtained by thermal decomposition of the oxalate hydrate at a temperature as low as 300 degrees C. The resulting solid consisted of nanodomains of TiO2 brookite embedded in large micrometer-size particles and exhibited a high specific surface area of 255 m(2)/g because of the mesoporosity arising from the removal of water from the oxalate species. This type of morphology is of interest for lithium-ion batteries because of an easier coating process and a higher surface contact between the material kind the electrolyte that enhanced the electrochemical activity. Finally, based on electrochemical characterizations, TiO2 brookite provided higher volumetric energy density than comparable nanomaterials.
引用
收藏
页码:1173 / 1179
页数:7
相关论文
共 28 条
[1]  
[Anonymous], 2009, IN CRYST STRUCT DAT
[2]  
[Anonymous], 2000, METAL OXIDE CHEM SYN
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]   Impact of nanosizing on lithiated rutile TiO2 [J].
Borghols, Wouter J. H. ;
Wagemaker, Marnix ;
Lafont, Ugo ;
Kelder, Erik M. ;
Mulder, Fokko M. .
CHEMISTRY OF MATERIALS, 2008, 20 (09) :2949-2955
[5]   Synthesis, structure determination from powder diffraction data and thermal behaviour of titanium(IV) oxalate [Ti2O3(H2O)2](C2O4)•H2O [J].
Boudaren, C ;
Bataille, T ;
Auffrédic, JP ;
Louër, D .
SOLID STATE SCIENCES, 2003, 5 (01) :175-182
[6]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[7]   Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries [J].
Deng, Da ;
Kim, Min Gyu ;
Lee, Jim Yang ;
Cho, Jaephil .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (08) :818-837
[8]   Synthesis and electrochemical performance of novel core/shell structured nanocomposites [J].
Fu, LJ ;
Liu, H ;
Zhang, HP ;
Li, C ;
Zhang, T ;
Wu, YP ;
Holze, R ;
Wu, HQ .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (01) :1-4
[9]   Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks [J].
Guo, Yu-Guo ;
Hu, Yong-Sheng ;
Sigle, Wilfried ;
Maier, Joachim .
ADVANCED MATERIALS, 2007, 19 (16) :2087-+
[10]   Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries [J].
Guo, Yu-Guo ;
Hu, Yong-Sheng ;
Maier, Joachim .
CHEMICAL COMMUNICATIONS, 2006, (26) :2783-2785