A graphene nanoribbon network and its biosensing application

被引:76
作者
Dong, Xiaochen [1 ,2 ]
Long, Qing [1 ,2 ]
Wang, Jing [3 ]
Chan-Park, M. B. [3 ]
Huang, Yinxi [3 ]
Huang, Wei [1 ,2 ]
Chen, Peng [3 ]
机构
[1] NUPT, KLOEID, Nanjing 210046, Peoples R China
[2] NUPT, Inst Adv Mat, Nanjing 210046, Peoples R China
[3] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637457, Singapore
基金
新加坡国家研究基金会;
关键词
CARBON NANOTUBES; OXIDE; FILMS; TEMPERATURE; FABRICATION; REDUCTION; GROWTH;
D O I
10.1039/c1nr11006c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene oxide nanoribbons (GONRs) have been prepared by chemically unzipping multiwalled carbon nanotubes (MWCNTs). Thin-film networks of GONRs were fabricated by spray-coating, followed by a chemical or thermal reduction to form reduced graphene oxide nanoribbons (rGONRs). Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) characterizations indicate that the thermal reduction in the presence of ethanol vapor effectively restores the graphitic structure of the GONR as compared to chemical reduction with hydrazine vapor. Electrical measurements under a liquid-gate configuration demonstrates that rGONR network field-effect transistors exhibit much higher on/off ratios than a network of microsized reduced graphene oxides (rGOs) or a continuous film of single-layered pristine or chemical vapor deposited (CVD) graphene. Furthermore, we demonstrated the potential applications of rGONR networks for biosensing, specifically, the real-time and sensitive detection of adenosine triphosphate (ATP) molecules.
引用
收藏
页码:5156 / 5160
页数:5
相关论文
共 49 条
[31]   Electric field effect in atomically thin carbon films [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Zhang, Y ;
Dubonos, SV ;
Grigorieva, IV ;
Firsov, AA .
SCIENCE, 2004, 306 (5696) :666-669
[32]   Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH Protein Adsorption [J].
Ohno, Yasuhide ;
Maehashi, Kenzo ;
Yamashiro, Yusuke ;
Matsumoto, Kazuhiko .
NANO LETTERS, 2009, 9 (09) :3318-3322
[33]  
PARTICK G, 2010, PHYS REV B, V81
[34]   Graphene-based nanomaterials for energy storage [J].
Pumera, Martin .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :668-674
[35]  
Reunchan P., 2011, APPL PHYS LETT, P98
[36]   Detection of individual gas molecules adsorbed on graphene [J].
Schedin, F. ;
Geim, A. K. ;
Morozov, S. V. ;
Hill, E. W. ;
Blake, P. ;
Katsnelson, M. I. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (09) :652-655
[37]  
Schwierz F, 2010, NAT NANOTECHNOL, V5, P487, DOI [10.1038/NNANO.2010.89, 10.1038/nnano.2010.89]
[38]   Electrochemical Unzipping of Multi-walled Carbon Nanotubes for Facile Synthesis of High-Quality Graphene Nanoribbons [J].
Shinde, Dhanraj B. ;
Debgupta, Joyashish ;
Kushwaha, Ajay ;
Aslam, Mohammed ;
Pillai, Vijayamohanan K. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (12) :4168-4171
[39]   Graphene based materials: Past, present and future [J].
Singh, Virendra ;
Joung, Daeha ;
Zhai, Lei ;
Das, Soumen ;
Khondaker, Saiful I. ;
Seal, Sudipta .
PROGRESS IN MATERIALS SCIENCE, 2011, 56 (08) :1178-1271
[40]   Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J].
Stankovich, Sasha ;
Dikin, Dmitriy A. ;
Piner, Richard D. ;
Kohlhaas, Kevin A. ;
Kleinhammes, Alfred ;
Jia, Yuanyuan ;
Wu, Yue ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
CARBON, 2007, 45 (07) :1558-1565