Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells

被引:32
作者
Basch, A. [1 ,2 ]
Beck, F. J. [3 ]
Soederstroem, T. [4 ]
Varlamov, S. [4 ]
Catchpole, K. R. [1 ]
机构
[1] Australian Natl Univ, Ctr Sustainable Energy Syst, Canberra, ACT 0200, Australia
[2] Graz Univ, Inst Phys, A-8010 Graz, Austria
[3] Inst Photon Sci, ICFO, Barcelona, Spain
[4] Univ NSW, ARC Ctr Excellence Adv Silicon Photovolta & Photo, Sydney, NSW 2052, Australia
基金
奥地利科学基金会; 澳大利亚研究理事会;
关键词
LIGHT; SILICON; PHOTOVOLTAICS; DESIGN;
D O I
10.1063/1.4729290
中图分类号
O59 [应用物理学];
学科分类号
摘要
A doubling of the photocurrent due to light trapping is demonstrated by the combination of silver nanoparticles with a highly reflective back scatterer fabricated by Snow Globe Coating on the rear of a 2 mu m polycrystalline silicon thin film solar cell. The binder free high refractive index titania particles can overcome light losses due to transmission. Modelling indicates that adding plasmonic nanoparticles to the back scatterer widens the angular distribution of scattered light such that over 80% of long wavelength light is scattered outside the Si/air loss cone and trapped in the cell, compared to 30% for the titania alone. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729290]
引用
收藏
页数:5
相关论文
共 28 条
[1]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[2]  
Basch A., 2012, COAGULATION KINETICS
[3]  
Basch A., PROG PHOTOV IN PRESS
[4]   Substrate-induced coagulation (SIC) of nano-disperse titania in non-aqueous media: The dispersibility and stability of titania in N-methyl-2-pyrrolidinone [J].
Basch, Angelika ;
Strnad, Simona ;
Ribitsch, Volker .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2009, 333 (1-3) :163-169
[5]   Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates [J].
Beck, F. J. ;
Verhagen, E. ;
Mokkapati, S. ;
Polman, A. ;
Catchpole, K. R. .
OPTICS EXPRESS, 2011, 19 (06) :A146-A156
[6]   Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells [J].
Beck, F. J. ;
Mokkapati, S. ;
Polman, A. ;
Catchpole, K. R. .
APPLIED PHYSICS LETTERS, 2010, 96 (03)
[7]   Light trapping with plasmonic particles: beyond the dipole model [J].
Beck, Fiona J. ;
Mokkapati, Sudha ;
Catchpole, Kylie R. .
OPTICS EXPRESS, 2011, 19 (25) :25230-25241
[8]   Design principles for particle plasmon enhanced solar cells [J].
Catchpole, K. R. ;
Polman, A. .
APPLIED PHYSICS LETTERS, 2008, 93 (19)
[9]   Plasmonics and nanophotonics for photovoltaics [J].
Catchpole, Kylie R. ;
Mokkapati, Sudha ;
Beck, Fiona ;
Wang, Er-Chien ;
McKinley, Arnold ;
Basch, Angelika ;
Lee, Jaret .
MRS BULLETIN, 2011, 36 (06) :461-467
[10]   Optical intensity of light in layers of silicon with rear diffuse reflectors [J].
Cotter, JE .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (01) :618-624