Oxidative damage in Huntington's disease pathogenesis

被引:240
作者
Browne, Susan E. [1 ]
Beal, M. Flint [1 ]
机构
[1] Cornell Univ, Weill Med Coll, Dept Neurol & Neurosci, New York, NY 14853 USA
关键词
D O I
10.1089/ars.2006.8.2061
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Huntington's disease (HD) is a devastating neurodegenerative disorder characterized by the progressive development of involuntary choreiform movements, cognitive impairment, neuropsychiatric symptoms, and premature death. These phenotypes reflect neuronal dysfunction and ultimately death in selected brain regions, the striatum and cerebral cortex being principal targets. The genetic mutation responsible for the HD phenotype is known, and its protein product, mutant huntingtin (mhtt), identified. HD is one of several "triplet repeat" diseases, in which abnormal expansions in trinucleotide repeat domains lead to elongated polyglutamine stretches in the affected gene's protein product. Mutant htt-mediated toxicity in the brain disrupts a number of vital cellular processes in the course of disease progression, including energy metabolism, gene transcription, clathrin-dependent endocytosis, intraneuronal trafficking, and postsynaptic signaling, but the crucial initiation mechanism induced by mhtt is still unclear. A large body of evidence, however, supports an early and critical involvement of defects in mitochondrial function and CNS energy metabolism in the disease trigger. Thus, downstream death-effector mechanisms, including excitotoxicity, apoptosis, and oxidative damage, have been implicated in the mechanism of selective neuronal damage in HD. Here we review the current evidence supporting a role for oxidative damage in the etiology of neuronal damage and degeneration in HD.
引用
收藏
页码:2061 / 2073
页数:13
相关论文
共 151 条
[1]   THE FUNCTIONAL-ANATOMY OF BASAL GANGLIA DISORDERS [J].
ALBIN, RL ;
YOUNG, AB ;
PENNEY, JB .
TRENDS IN NEUROSCIENCES, 1989, 12 (10) :366-375
[2]   Lipoic acid improves survival in transgenic mouse models of Huntington's disease [J].
Andreassen, OA ;
Ferrante, RJ ;
Dedeoglu, A ;
Beal, MF .
NEUROREPORT, 2001, 12 (15) :3371-3373
[3]   Mice with a partial deficiency of manganese superoxide dismutase show increased vulnerability to the mitochondrial toxins malonate, 3-nitropropionic acid, and MPTP [J].
Andreassen, OA ;
Ferrante, RJ ;
Dedeoglu, A ;
Albers, DW ;
Klivenyi, P ;
Carlson, EJ ;
Epstein, CJ ;
Beal, MF .
EXPERIMENTAL NEUROLOGY, 2001, 167 (01) :189-195
[4]   NR2A and NR2B receptor gene variations modify age at onset in Huntington disease [J].
Arning, L ;
Kraus, PH ;
Valentin, S ;
Saft, C ;
Andrich, J ;
Epplen, JT .
NEUROGENETICS, 2005, 6 (01) :25-28
[5]   Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death [J].
Arrasate, M ;
Mitra, S ;
Schweitzer, ES ;
Segal, MR ;
Finkbeiner, S .
NATURE, 2004, 431 (7010) :805-810
[6]   Mutant Huntingtin: Nuclear translocation and cytotoxicity mediated by GAPDH [J].
Bae, Y ;
Hara, MR ;
Cascio, MB ;
Wellington, CL ;
Hayden, MR ;
Ross, CA ;
Ha, HC ;
Li, XJ ;
Snyder, SH ;
Sawa, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (09) :3405-3409
[7]  
BEAL MF, 1991, J NEUROSCI, V11, P1649
[8]  
BEAL MF, 1992, J NEUROL SCI, V108, P80
[9]   REPLICATION OF THE NEUROCHEMICAL CHARACTERISTICS OF HUNTINGTONS-DISEASE BY QUINOLINIC ACID [J].
BEAL, MF ;
KOWALL, NW ;
ELLISON, DW ;
MAZUREK, MF ;
SWARTZ, KJ ;
MARTIN, JB .
NATURE, 1986, 321 (6066) :168-171
[10]   KYNURENINE PATHWAY MEASUREMENTS IN HUNTINGTONS-DISEASE STRIATUM - EVIDENCE FOR REDUCED FORMATION OF KYNURENIC ACID [J].
BEAL, MF ;
MATSON, WR ;
SWARTZ, KJ ;
GAMACHE, PH ;
BIRD, ED .
JOURNAL OF NEUROCHEMISTRY, 1990, 55 (04) :1327-1339