Visual cluster analysis of trajectory data with interactive Kohonen maps

被引:89
作者
Schreck, Tobias [1 ]
Bernard, Juergen [1 ]
von Landesberger, Tatiana [1 ]
Kohlhammer, Joern [2 ]
机构
[1] Tech Univ Darmstadt, Interact Graph Syst Grp, D-64283 Darmstadt, Germany
[2] Fraunhofer Inst Comp Graph IGD, D-64283 Darmstadt, Germany
关键词
visual analytics; visual cluster analysis; self-organizing maps; trajectory data; time series data;
D O I
10.1057/ivs.2008.29
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Visual-interactive cluster analysis provides valuable tools for effectively analyzing large and complex data sets. Owing to desirable properties and an inherent predisposition for visualization, the Kohonen Feature Map (or Self-Organizing Map or SOM) algorithm is among the most popular and widely used visual clustering techniques. However, the unsupervised nature of the algorithm may be disadvantageous in certain applications. Depending on initialization and data characteristics, cluster maps (cluster layouts) may emerge that do not comply with user preferences, expectations or the application context. Considering SOM-based analysis of trajectory data, we propose a comprehensive visual-interactive monitoring and control framework extending the basic SOM algorithm. The framework implements the general Visual Analytics idea to effectively combine automatic data analysis with human expert supervision. It provides simple, yet effective facilities for visually monitoring and interactively controlling the trajectory clustering process at arbitrary levels of detail. The approach allows the user to leverage existing domain knowledge and user preferences, arriving at improved cluster maps. We apply the framework on several trajectory clustering problems, demonstrating its potential in combining both unsupervised (machine) and supervised (human expert) processing, in producing appropriate cluster results. Information Visualization (2009) 8, 14-29. doi: 10.1057/ivs.2008.29; published online 12 February 2009
引用
收藏
页码:14 / 29
页数:16
相关论文
共 22 条
  • [1] Andrienko G., 2007, ACM SIGKDD EXPLORATI, V9, P38, DOI DOI 10.1145/1345448.1345455
  • [2] Andrienko N., 2007, CARTOGRAPHICA V42 2, P117, DOI DOI 10.3138/CART0.42.2.117
  • [3] [Anonymous], 2011, Pei. data mining concepts and techniques
  • [4] BOERSE AGD, DTSCH AKTIEN INDEX D
  • [5] Bustos B, 2004, P IEEE VIS C VIS, P598
  • [6] Deboeck G., 1998, VISUAL EXPLORATIONS
  • [7] Class visualization of high-dimensional data with applications
    Dhillon, IS
    Modha, DS
    Spangler, WS
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 41 (01) : 59 - 90
  • [8] Guo DS, 2006, IEEE T VIS COMPUT GR, V12, P1461, DOI 10.1109/TVCG.2006.84
  • [9] HD-eye: Visual mining of high-dimensional data
    Hinneburg, A
    Keim, DA
    Wawryniuk, M
    [J]. IEEE COMPUTER GRAPHICS AND APPLICATIONS, 1999, 19 (05) : 22 - 31
  • [10] Hynninen J., 1996, A31 HELS U TECHN