Visual cluster analysis of trajectory data with interactive Kohonen maps

被引:89
作者
Schreck, Tobias [1 ]
Bernard, Juergen [1 ]
von Landesberger, Tatiana [1 ]
Kohlhammer, Joern [2 ]
机构
[1] Tech Univ Darmstadt, Interact Graph Syst Grp, D-64283 Darmstadt, Germany
[2] Fraunhofer Inst Comp Graph IGD, D-64283 Darmstadt, Germany
关键词
visual analytics; visual cluster analysis; self-organizing maps; trajectory data; time series data;
D O I
10.1057/ivs.2008.29
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Visual-interactive cluster analysis provides valuable tools for effectively analyzing large and complex data sets. Owing to desirable properties and an inherent predisposition for visualization, the Kohonen Feature Map (or Self-Organizing Map or SOM) algorithm is among the most popular and widely used visual clustering techniques. However, the unsupervised nature of the algorithm may be disadvantageous in certain applications. Depending on initialization and data characteristics, cluster maps (cluster layouts) may emerge that do not comply with user preferences, expectations or the application context. Considering SOM-based analysis of trajectory data, we propose a comprehensive visual-interactive monitoring and control framework extending the basic SOM algorithm. The framework implements the general Visual Analytics idea to effectively combine automatic data analysis with human expert supervision. It provides simple, yet effective facilities for visually monitoring and interactively controlling the trajectory clustering process at arbitrary levels of detail. The approach allows the user to leverage existing domain knowledge and user preferences, arriving at improved cluster maps. We apply the framework on several trajectory clustering problems, demonstrating its potential in combining both unsupervised (machine) and supervised (human expert) processing, in producing appropriate cluster results. Information Visualization (2009) 8, 14-29. doi: 10.1057/ivs.2008.29; published online 12 February 2009
引用
收藏
页码:14 / 29
页数:16
相关论文
共 22 条
  • [11] IVANOV Y, 2007, T VISUALIZATION COMP, V13, P1153
  • [12] Data clustering: A review
    Jain, AK
    Murty, MN
    Flynn, PJ
    [J]. ACM COMPUTING SURVEYS, 1999, 31 (03) : 264 - 323
  • [13] WEBSOM - Self-organizing maps of document collections
    Kaski, S
    Honkela, T
    Lagus, K
    Kohonen, T
    [J]. NEUROCOMPUTING, 1998, 21 (1-3) : 101 - 117
  • [14] Kaufman L., 2009, Finding groups in data: An introduction to cluster analysis
  • [15] Keim D.A., 2008, Lecture Notes In Computer Science
  • [16] Kohonen T., 2001, SELF ORG MAPS, V3rd ed, DOI 10.1007/978-3-642-56927-2
  • [17] LAAKSONEN J, 2007, PATTERN RECOGN, V21, P1199
  • [18] Palma AT, 2008, APPLIED COMPUTING 2008, VOLS 1-3, P863
  • [19] Pelekis N, 2007, INT WORKSHOP TEMPORA, P129
  • [20] Schreck T., 2007, SIGKDD Explorations, V9, P30, DOI 10.1145/1345448.1345454