Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices

被引:137
作者
Aran, Kiana [1 ]
Sasso, Lawrence A. [1 ]
Kamdar, Neal [1 ]
Zahn, Jeffrey D. [1 ]
机构
[1] Rutgers State Univ, Dept Biomed Engn, Piscataway, NJ 08854 USA
基金
美国国家卫生研究院;
关键词
SYSTEMS; ARRAY;
D O I
10.1039/b924816a
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A method for integrating porous polymer membranes such as polycarbonate, polyethersulfone and polyethylene terephthalate to microfluidic devices is described. The use of 3-amino-propyltriethoxysilane as a chemical crosslinking agent was extended to integrate membranes with PDMS and glass microfluidic channels. A strong, irreversible bond between the membranes and microfluidic structure was achieved. The bonding strength in the APTES treated devices was significantly greater than in devices fabricated using either a PDMS "glue'' or two-part epoxy bonding method. Evaluation of a filtering microdevice and the pore structure via SEM indicates the APTES conjugation does not significantly alter the membrane transport function and pore morphology.
引用
收藏
页码:548 / 552
页数:5
相关论文
共 11 条
[1]   Room-temperature intermediate layer bonding for microfluidic devices [J].
Bart, Jacob ;
Tiggelaar, Roald ;
Yang, Menglong ;
Schlautmann, Stefan ;
Zuilhof, Han ;
Gardeniers, Han .
LAB ON A CHIP, 2009, 9 (24) :3481-3488
[2]   Leakage-free bonding of porous membranes into layered microfluidic array systems [J].
Chueh, Bor-han ;
Huh, Dongeun ;
Kyrtsos, Christina R. ;
Houssin, Timothee ;
Futai, Nobuyuki ;
Takayama, Shuichi .
ANALYTICAL CHEMISTRY, 2007, 79 (09) :3504-3508
[3]   Membranes and microfluidics: a review [J].
de Jong, J. ;
Lammertink, R. G. H. ;
Wessling, M. .
LAB ON A CHIP, 2006, 6 (09) :1125-1139
[4]   An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models [J].
Kimura, Hiroshi ;
Yamamoto, Takatoki ;
Sakai, Hitomi ;
Sakai, Yasuyuki ;
Fujii, Teruo .
LAB ON A CHIP, 2008, 8 (05) :741-746
[5]   Gateable nanofluidic interconnects for multilayered microfluidic separation systems [J].
Kuo, TC ;
Cannon, DM ;
Chen, YN ;
Tulock, JJ ;
Shannon, MA ;
Sweedler, JV ;
Bohn, PW .
ANALYTICAL CHEMISTRY, 2003, 75 (08) :1861-1867
[6]   A membrane-based microfluidic device for controlling the flux of platelet agonists into flowing blood [J].
Neeves, Keith B. ;
Diamond, Scott L. .
LAB ON A CHIP, 2008, 8 (05) :701-709
[7]   Quantification of human immunoglobulin G immobilized on gold-coated silicon chip for biosensing applications [J].
Vashist, S. K. ;
Raiteri, R. ;
Tewari, R. ;
Bajpai, R. P. ;
Bharadwaj, L. M. .
INTERNATIONAL MEMS CONFERENCE 2006, 2006, 34 :806-811
[8]   A low temperature surface modification assisted method for bonding plastic substrates [J].
Vlachopoulou, M-E ;
Tserepi, A. ;
Pavli, P. ;
Argitis, P. ;
Sanopoulou, M. ;
Misiakos, K. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2009, 19 (01)
[9]   High speed nanofluidic protein accumulator [J].
Wu, Dapeng ;
Steckl, Andrew J. .
LAB ON A CHIP, 2009, 9 (13) :1890-1896
[10]   Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding [J].
Wu, HK ;
Huang, B ;
Zare, RN .
LAB ON A CHIP, 2005, 5 (12) :1393-1398