On a nonlinear distributed order fractional differential equation

被引:50
作者
Atanackovic, Teodor M.
Oparnica, Ljubica
Pihpovic, Stevan
机构
[1] Univ Novi Sad, Fac Tech Sci, Novi Sad 21000, Serbia
[2] Univ Novi Sad, Math Inst, Novi Sad 21000, Serbia
关键词
distributed order fractional differential equations; existence and uniqueness; variational principle;
D O I
10.1016/j.jmaa.2006.05.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and the uniqueness of mild and classical solutions for a class of equations of the form y((2))(t) + integral(2)(0) phi(alpha)y((alpha))(t)d alpha = f (y, t). Such equations arise in distributed derivatives models of viscoelasticity and system identification theory. We also formulate a variational principle for a more general equation based on a method of doubling of variables for such equations. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:590 / 608
页数:19
相关论文
共 15 条
[1]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[2]  
[Anonymous], 2003, PHYS FRACTAL OPER
[3]   On a class of equations arising in linear viscoelasticity theory [J].
Atanackovic, T ;
Pilipovic, S .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2005, 85 (10) :748-754
[4]   On a fractional distributed-order oscillator [J].
Atanackovic, TM ;
Budincevic, M ;
Pilipovic, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (30) :6703-6713
[5]   On a distributed derivative model of a viscoelastic body [J].
Atanackovic, TM .
COMPTES RENDUS MECANIQUE, 2003, 331 (10) :687-692
[6]   A generalized model for the uniaxial isothermal deformation of a viscoelastic body [J].
Atanackovic, TM .
ACTA MECHANICA, 2002, 159 (1-4) :77-86
[7]  
Bagley R.L., 2000, International Journal of Applied Mathematics, V2, P865
[8]   Existence and uniqueness for a nonlinear fractional differential equation [J].
Delbosco, D ;
Rodino, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 204 (02) :609-625
[9]   Analysis of fractional differential equations [J].
Diethelm, K ;
Ford, NJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) :229-248
[10]   Nonconservative Lagrangian mechanics: a generalized function approach [J].
Dreisigmeyer, DW ;
Young, PM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (30) :8297-8310