A tale of two proteins:: Differential roles and regulation of Smad2 and Smad3 in TGF-β signaling

被引:330
作者
Brown, Kimberly A.
Pietenpol, Jennifer A.
Moses, Harold L.
机构
[1] Vanderbilt Univ, Vanderbilt Ingram Canc Ctr, Dept Canc Biol, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Vanderbilt Ingram Canc Ctr, Dept Biochem, Nashville, TN 37232 USA
关键词
TGF-beta; Smad2; Smad3; transcription factors; localization; cancer; therapeutics;
D O I
10.1002/jcb.21255
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transforming growth factor-beta (TGF-beta) is an important growth inhibitor of epithelial cells, and insensitivity to this cytokine results in uncontrolled cell proliferation and can contribute to tumorigenesis. Smad2 and Smad3 are direct mediators of TGF-beta signaling, however little is known about the selective activation of Smad2 versus Smad3. The Smad2 and Smad3 knockout mouse phenotypes and studies comparing Smad2 and Smad3 activation of TGF-beta target genes, suggest that Smad2 and Smad3 have distinct roles in TGF-beta signaling. The observation that TGF-beta inhibits proliferation of Smad3-null mammary gland epithelial cells, whereas Smad3 deficient fibroblasts are only partially growth inhibited, suggests that Smad3 has a different role in epithelial cells and fibroblasts. Herein, the current understanding of Smad2 and Smad3-mediated TGF-beta signaling and their relative roles are discussed, in addition to potential mechanisms for the selective activation of Smad2 versus Smad3. Since alterations in the TGF-beta signaling pathway play an important role in promoting tumorigenesis and cancer progression, methods for therapeutic targeting of the TGF-beta signaling pathway are being pursued. Determining how Smad2 or Smad3 differentially regulate the TGF-beta response may translate into developing more effective strategies for cancer therapy.
引用
收藏
页码:9 / 33
页数:25
相关论文
共 212 条
[1]   T beta RI phosphorylation of Smad2 on Ser(465) and Ser(467) is required for Smad2-Smad4 complex formation and signaling [J].
Abdollah, S ;
MaciasSilva, M ;
Tsukazaki, T ;
Hayashi, H ;
Attisano, L ;
Wrana, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (44) :27678-27685
[2]   Induction of inhibitory Smad6 and Smad7 mRNA by TGF-β family members [J].
Afrakhte, M ;
Morén, A ;
Jossan, S ;
Itoh, S ;
Westermark, B ;
Heldin, CH ;
Heldin, NE ;
ten Dijke, P .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 249 (02) :505-511
[3]   Menin molecular interactions: Insights into normal functions and tumorigenesis [J].
Agarwal, SK ;
Kennedy, PA ;
Scacheri, PC ;
Novotny, EA ;
Hickman, AB ;
Cerrato, A ;
Rice, TS ;
Moore, JB ;
Rao, S ;
Ji, Y ;
Mateo, C ;
Libutti, SK ;
Oliver, B ;
Chandrasekharappa, SC ;
Burns, AL ;
Collins, FS ;
Spiegel, AM ;
Marx, SJ .
HORMONE AND METABOLIC RESEARCH, 2005, 37 (06) :369-374
[4]   TGF-β signaling in cancer -: a double-edged sword [J].
Akhurst, RJ ;
Derynck, R .
TRENDS IN CELL BIOLOGY, 2001, 11 (11) :S44-S51
[5]   c-Ski acts as a transcriptional co-repressor in transforming growth factor-β signaling through interaction with Smads [J].
Akiyoshi, S ;
Inoue, H ;
Hanai, J ;
Kusanagi, K ;
Nemoto, N ;
Miyazono, K ;
Kawabata, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (49) :35269-35277
[6]   Repression of bone morphogenetic protein and activin-inducible transcription by Evi-1 [J].
Alliston, T ;
Ko, TC ;
Cao, YN ;
Liang, YY ;
Feng, XH ;
Chang, CB ;
Derynck, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (25) :24227-24237
[7]   Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response [J].
Ashcroft, GS ;
Yang, X ;
Glick, AB ;
Weinstein, M ;
Letterio, JJ ;
Mizel, DE ;
Anzano, M ;
Greenwell-Wild, T ;
Wahl, SM ;
Deng, CX ;
Roberts, AB .
NATURE CELL BIOLOGY, 1999, 1 (05) :260-266
[8]   The transcriptional role of Smads and FAST (FoxH1) in TGFβ and activin signalling [J].
Attisano, L ;
Silvestri, C ;
Izzi, L ;
Labbé, E .
MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2001, 180 (1-2) :3-11
[9]   High-throughput mapping of a dynamic signaling network in mammalian cells [J].
Barrios-Rodiles, M ;
Brown, KR ;
Ozdamar, B ;
Bose, R ;
Liu, Z ;
Donovan, RS ;
Shinjo, F ;
Liu, YM ;
Dembowy, J ;
Taylor, IW ;
Luga, V ;
Przulj, N ;
Robinson, M ;
Suzuki, H ;
Hayashizaki, Y ;
Jurisica, I ;
Wrana, JL .
SCIENCE, 2005, 307 (5715) :1621-1625
[10]   Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism [J].
Bhowmick, NA ;
Ghiassi, M ;
Bakin, A ;
Aakre, M ;
Lundquist, CA ;
Engel, ME ;
Arteaga, CL ;
Moses, HL .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (01) :27-36