Saccharomyces cerevisiae C1D is implicated in both non-homologous DNA end joining and homologous recombination

被引:36
作者
Erdemir, T
Bilican, B
Cagatay, T
Goding, CR
Yavuzer, U [1 ]
机构
[1] Bilkent Univ, Dept Genet & Mol Biol, TR-06533 Ankara, Turkey
[2] Marie Curie Res Inst, Surrey RH8 0TL, England
关键词
D O I
10.1046/j.1365-2958.2002.03224.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
C1D is a gamma-irradiation inducible nuclear matrix protein that interacts with and activates the DNA-dependent protein kinase (DNA-PK) that is essential for the repair of the DNA double-strand breaks and V(D)J recombination. Recently, it was demonstrated that C1D can also interact with TRAX and prevent the association of TRAX with Translin, a factor known to bind DNA break-point junctions, and that over expression of C1D can induce p53-dependent apoptosis. Taken together, these findings suggest that mammalian C1D could be involved in maintenance of genome integrity by regulating the activity of proteins involved in DNA repair and recombination. To obtain direct evidence for the biological function of C1D that we show is highly conserved between diverse species, we have analysed the Saccharomyces cerevisiae C1D homologue. We report that the disruption of the YC1D gene results in a temperature sensitivity and that yc1d mutant strains exhibit defects in non-homologous DNA end joining (NHEJ) and accurate DNA repair. In addition, using a novel plasmid-based in vivo recombination assay, we show that yc1d mutant strains are also defective in homologous recombination. These results indicate that YC1D is implicated in both homologous recombination and NHEJ pathways for the repair of DNA double-strand breaks.
引用
收藏
页码:947 / 957
页数:11
相关论文
共 35 条
[1]   Isolation and characterization of a cDNA encoding a Translin-like protein, TRAX [J].
Aoki, K ;
Ishida, R ;
Kasai, M .
FEBS LETTERS, 1997, 401 (2-3) :109-112
[2]   A NOVEL GENE, TRANSLIN, ENCODES A RECOMBINATION HOTSPOT BINDING-PROTEIN ASSOCIATED WITH CHROMOSOMAL TRANSLOCATIONS [J].
AOKI, K ;
SUZUKI, K ;
SUGANO, T ;
TASAKA, T ;
NAKAHARA, K ;
KUGE, O ;
OMORI, A ;
KASAI, M .
NATURE GENETICS, 1995, 10 (02) :167-174
[3]   Genes required for ionizing radiation resistance in yeast [J].
Bennett, CB ;
Lewis, LK ;
Karthikeyan, G ;
Lobachev, KS ;
Jin, YH ;
Sterling, JF ;
Snipe, JR ;
Resnick, MA .
NATURE GENETICS, 2001, 29 (04) :426-434
[4]  
Bode J, 2000, J CELL BIOCHEM, P3
[5]   Identification of a Saccharomyces cerevisiae Ku80 homologue: Roles in DNA double strand break rejoining and in telomeric maintenance [J].
Boulton, SJ ;
Jackson, SP .
NUCLEIC ACIDS RESEARCH, 1996, 24 (23) :4639-4648
[6]   Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways [J].
Boulton, SJ ;
Jackson, SP .
EMBO JOURNAL, 1996, 15 (18) :5093-5103
[7]   Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing [J].
Boulton, SJ ;
Jackson, SP .
EMBO JOURNAL, 1998, 17 (06) :1819-1828
[8]   Translin recognition site sequences flank chromosome translocation breakpoints in alveolar rhabdomyosarcoma cell lines [J].
Chalk, JG ;
Barr, FG ;
Mitchell, CD .
ONCOGENE, 1997, 15 (10) :1199-1205
[9]   Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants [J].
Chen, C ;
Kolodner, RD .
NATURE GENETICS, 1999, 23 (01) :81-85
[10]   Trax (Translin-associated factor X), a primarily cytoplasmic protein, inhibits the binding of TB-RBP (Translin) to RNA [J].
Chennathukuzhi, VM ;
Kurihara, Y ;
Bray, JD ;
Hecht, NB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (16) :13256-13263