Ultra-Low Thermal Conductivity in Nanoscale Layered Oxides

被引:12
作者
Alvarez-Quintana, J. [1 ]
Peralba-Garcia, Ll. [1 ]
Labar, J. L. [2 ]
Rodriguez-Viejo, J. [1 ,3 ]
机构
[1] Univ Autonoma Barcelona, Dept Phys, Nanomat & Microsyst Grp, Bellaterra 08193, Spain
[2] Res Inst Tech Phys & Mat Sci, H-1525 Budapest, Hungary
[3] MATGAS Res Ctr, Bellaterra 08193, Spain
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2010年 / 132卷 / 03期
关键词
annealing; dielectric materials; electron beam deposition; heat transfer; multilayers; thermal barrier coatings; thermal conductivity; thermal resistance; YTTRIA-STABILIZED ZIRCONIA; THIN-FILMS; BARRIER COATINGS; BOUNDARY RESISTANCE; ELASTIC-CONSTANTS; HEAT-TRANSPORT; 3-OMEGA METHOD; HETEROSTRUCTURES; TEMPERATURES; CONDUCTANCE;
D O I
10.1115/1.4000052
中图分类号
O414.1 [热力学];
学科分类号
摘要
The cross-plane thermal conductivity of several nanoscale layered oxides SiO2/Y2O3, SiO2/Cr2O3, and SiO2/Al2O3, synthesized by e-beam evaporation was measured in the range from 30 K to 300 K by the 3 omega method. Thermal conductivity attains values around 0.5 W/m K at room temperature in multilayer samples, formed by 20 bilayers of 10 nm SiO2/10 nm Y2O3, and as low as 0.16 W/m K for a single bilayer. The reduction in thermal conductivity is related to the high interface density, which produces a strong barrier to heat transfer rather than to the changes of the intrinsic thermal conductivity due to the nanometer thickness of the layers. We show that the influence of the first few interfaces on the overall thermal resistance is higher than the subsequent ones. Annealing the multilayered samples to 1100 degrees C slightly increases the thermal conductivity due to changes in the microstructure. These results suggest a route to obtain suitable thermal barrier coatings for high temperature applications.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 35 条
[1]   Interface and strain effects on the thermal conductivity of heterostructures: A molecular dynamics study [J].
Abramson, AR ;
Tien, CL ;
Majumdar, A .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (05) :963-970
[2]   Interfacial effects on the thermal conductivity of a-Ge thin films grown on Si substrates [J].
Alvarez-Quintana, J. ;
Rodriguez-Viejo, J. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (07)
[3]   The evolution of thermal barrier coatings - status and upcoming solutions for today's key issues [J].
Beele, W ;
Marijnissen, G ;
van Lieshout, A .
SURFACE & COATINGS TECHNOLOGY, 1999, 120 :61-67
[4]   3RD-ORDER ELASTIC CONSTANTS OF GE MGO AND FUSED SIO2 [J].
BOGARDUS, EH .
JOURNAL OF APPLIED PHYSICS, 1965, 36 (08) :2504-&
[5]  
CAHILL DG, 1988, ANNU REV PHYS CHEM, V39, P93, DOI 10.1146/annurev.physchem.39.1.93
[6]   Interface thermal conductance and the thermal conductivity of multilayer thin films [J].
Cahill, DG ;
Bullen, A ;
Lee, SM .
HIGH TEMPERATURES-HIGH PRESSURES, 2000, 32 (02) :135-142
[7]   THERMAL-CONDUCTIVITY OF ALPHA-SIH THIN-FILMS [J].
CAHILL, DG ;
KATIYAR, M ;
ABELSON, JR .
PHYSICAL REVIEW B, 1994, 50 (09) :6077-6081
[8]   THERMAL-CONDUCTIVITY MEASUREMENT FROM 30-K TO 750-K - THE 3-OMEGA METHOD [J].
CAHILL, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1990, 61 (02) :802-808
[9]   Ceramic materials for thermal barrier coatings [J].
Cao, XQ ;
Vassen, R ;
Stoever, D .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (01) :1-10
[10]   Ultralow thermal conductivity in disordered, layered WSe2 crystals [J].
Chiritescu, Catalin ;
Cahill, David G. ;
Nguyen, Ngoc ;
Johnson, David ;
Bodapati, Arun ;
Keblinski, Pawel ;
Zschack, Paul .
SCIENCE, 2007, 315 (5810) :351-353