Intrinsic Gene Expression Profiles of Gliomas Are a Better Predictor of Survival than Histology

被引:545
作者
Gravendeel, Lonneke A. M. [1 ]
Kouwenhoven, Mathilde C. M. [1 ]
Gevaert, Olivier [6 ]
de Rooi, Johan J. [2 ,3 ]
Stubbs, Andrew P. [2 ]
Duijm, J. Elza [1 ]
Daemen, Anneleen [6 ]
Bleeker, Fonnet E. [7 ]
Bralten, Linda B. C. [1 ]
Kloosterhof, Nanne K. [1 ,5 ]
De Moor, Bart [6 ]
Eilers, Paul H. C. [3 ]
van der Spek, Peter J. [2 ]
Kros, Johan M. [4 ]
Smitt, Peter A. E. Sillevis [1 ]
van den Bent, Martin J. [1 ]
French, Pim J. [1 ]
机构
[1] Erasmus Univ, Med Ctr, Dept Neurol, NL-3000 CA Rotterdam, Netherlands
[2] Erasmus Univ, Med Ctr, Dept Bioinformat, NL-3000 CA Rotterdam, Netherlands
[3] Erasmus Univ, Med Ctr, Dept Biostat, NL-3000 CA Rotterdam, Netherlands
[4] Erasmus Univ, Med Ctr, Dept Pathol, NL-3000 CA Rotterdam, Netherlands
[5] Sophia Childrens Univ Hosp, Dept Pediat Oncol & Hematol, Rotterdam, Netherlands
[6] Katholieke Univ Leuven, Dept Elect Engn ESAT SCD, Louvain, Belgium
[7] Amsterdam Med Ctr, Dept Neurosurg, Amsterdam, Netherlands
关键词
PROGNOSTIC-FACTORS; MALIGNANT GLIOMAS; BRAIN-TUMORS; GLIOBLASTOMA; SUBCLASSES; PATTERNS; IDENTIFY; SUBTYPES; NUMBER;
D O I
10.1158/0008-5472.CAN-09-2307
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Gliomas are the most common primary brain tumors with heterogeneous morphology and variable prognosis. Treatment decisions in patients rely mainly on histologic classification and clinical parameters. However, differences between histologic subclasses and grades are subtle, and classifying gliomas is subject to a large interobserver variability. To improve current classification standards, we have performed gene expression profiling on a large cohort of glioma samples of all histologic subtypes and grades. We identified seven distinct molecular subgroups that correlate with survival. These include two favorable prognostic subgroups (median survival, >4.7 years), two with intermediate prognosis (median survival, 1-4 years), two with poor prognosis (median survival, <1 year), and one control group. The intrinsic molecular subtypes of glioma are different from histologic subgroups and correlate better to patient survival. The prognostic value of molecular subgroups was validated on five independent sample cohorts (The Cancer Genome Atlas, Repository for Molecular Brain Neoplasia Data, GSE12907, GSE4271, and Li and colleagues). The power of intrinsic subtyping is shown by its ability to identify a subset of prognostically favorable tumors within an external data set that contains only histologically confirmed glioblastomas (GBM). Specific genetic changes (epidermal growth factor receptor amplification, IDH1 mutation, and 1p/19q loss of heterozygosity) segregate in distinct molecular subgroups. We identified a subgroup with molecular features associated with secondary GBM, suggesting that different genetic changes drive gene expression profiles. Finally, we assessed response to treatment in molecular subgroups. Our data provide compelling evidence that expression profiling is a more accurate and objective method to classify gliomas than histologic classification. Molecular classification therefore may aid diagnosis and can guide clinical decision making. [Cancer Res 2009;69(23):9065-72]
引用
收藏
页码:9065 / 9072
页数:8
相关论文
共 35 条
[21]   An integrated genomic analysis of human glioblastoma Multiforme [J].
Parsons, D. Williams ;
Jones, Sian ;
Zhang, Xiaosong ;
Lin, Jimmy Cheng-Ho ;
Leary, Rebecca J. ;
Angenendt, Philipp ;
Mankoo, Parminder ;
Carter, Hannah ;
Siu, I-Mei ;
Gallia, Gary L. ;
Olivi, Alessandro ;
McLendon, Roger ;
Rasheed, B. Ahmed ;
Keir, Stephen ;
Nikolskaya, Tatiana ;
Nikolsky, Yuri ;
Busam, Dana A. ;
Tekleab, Hanna ;
Diaz, Luis A., Jr. ;
Hartigan, James ;
Smith, Doug R. ;
Strausberg, Robert L. ;
Marie, Suely Kazue Nagahashi ;
Shinjo, Sueli Mieko Oba ;
Yan, Hai ;
Riggins, Gregory J. ;
Bigner, Darell D. ;
Karchin, Rachel ;
Papadopoulos, Nick ;
Parmigiani, Giovanni ;
Vogelstein, Bert ;
Velculescu, Victor E. ;
Kinzler, Kenneth W. .
SCIENCE, 2008, 321 (5897) :1807-1812
[22]   Improved grading and survival prediction of human astrocytic brain tumors by artificial neural network analysis of gene expression microarray data [J].
Petalidis, Lawrence P. ;
Oulas, Anastasis ;
Backlund, Magnus ;
Wayland, Matthew T. ;
Liu, Lu ;
Plant, Karen ;
Happerfield, Lisa ;
Freeman, Tom C. ;
Poirazi, Panayiota ;
Collins, V. Peter .
MOLECULAR CANCER THERAPEUTICS, 2008, 7 (05) :1013-1024
[23]   Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis [J].
Phillips, HS ;
Kharbanda, S ;
Chen, RH ;
Forrest, WF ;
Soriano, RH ;
Wu, TD ;
Misra, A ;
Nigro, JM ;
Colman, H ;
Soroceanu, L ;
Williams, PM ;
Modrusan, Z ;
Feuerstein, BG ;
Aldape, K .
CANCER CELL, 2006, 9 (03) :157-173
[24]   Prognostic factors for survival in adult patients with cerebral low-grade glioma [J].
Pignatti, F ;
van den Bent, M ;
Curran, D ;
Debruyne, C ;
Sylvester, R ;
Therasse, P ;
Afra, D ;
Cornu, P ;
Bolla, M ;
Vecht, C ;
Karim, ABMF .
JOURNAL OF CLINICAL ONCOLOGY, 2002, 20 (08) :2076-2084
[25]   The RIN: an RNA integrity number for assigning integrity values to RNA measurements [J].
Schroeder, A ;
Mueller, O ;
Stocker, S ;
Salowsky, R ;
Leiber, M ;
Gassmann, M ;
Lightfoot, S ;
Menzel, W ;
Granzow, M ;
Ragg, T .
BMC MOLECULAR BIOLOGY, 2006, 7
[26]   Gene expression-based molecular diagnostic system for malignant gliomas is superior to histological diagnosis [J].
Shirahata, Mitsuaki ;
Iwao-Koizumi, Kyoko ;
Saito, Sakae ;
Ueno, Noriko ;
Oda, Masashi ;
Hashimoto, Nobuo ;
Takahashi, Jun A. ;
Kato, Kikuya .
CLINICAL CANCER RESEARCH, 2007, 13 (24) :7341-7356
[27]   Using gene expression profiling to identify a prognostic molecular spectrum in gliomas [J].
Shirahata, Mitsuaki ;
Oba, Shigeyuki ;
Iwao-Koizumi, Kyoko ;
Saito, Sakae ;
Ueno, Noriko ;
Oda, Masashi ;
Hashimoto, Nobuo ;
Ishii, Shin ;
Takahashi, June A. ;
Kato, Kikuya .
CANCER SCIENCE, 2009, 100 (01) :165-172
[28]   Multifocal glioblastoma multiforme: Prognostic factors and patterns of progression [J].
Showalter, Timothy N. ;
Andrel, Jocelyn ;
Andrews, David W. ;
Curran, Walter J., Jr. ;
Daskalakis, Constantine ;
Werner-Wasik, Maria .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2007, 69 (03) :820-824
[29]   Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications [J].
Sorlie, T ;
Perou, CM ;
Tibshirani, R ;
Aas, T ;
Geisler, S ;
Johnsen, H ;
Hastie, T ;
Eisen, MB ;
van de Rijn, M ;
Jeffrey, SS ;
Thorsen, T ;
Quist, H ;
Matese, JC ;
Brown, PO ;
Botstein, D ;
Lonning, PE ;
Borresen-Dale, AL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (19) :10869-10874
[30]   Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles [J].
Subramanian, A ;
Tamayo, P ;
Mootha, VK ;
Mukherjee, S ;
Ebert, BL ;
Gillette, MA ;
Paulovich, A ;
Pomeroy, SL ;
Golub, TR ;
Lander, ES ;
Mesirov, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (43) :15545-15550